3.已知一幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.14+6$\sqrt{5}$+10πB.14+6$\sqrt{5}$+20πC.12+12πD.26+6$\sqrt{5}$+10π

分析 根據(jù)幾何體的三視圖知該幾何體是半圓柱體與三棱柱的組合體,
結合圖中數(shù)據(jù)求出它的表面積.

解答 解:根據(jù)幾何體的三視圖知,該幾何體是半圓柱體與三棱柱的組合體,
如圖所示,
則該幾何體的表面積為
S=S三棱柱+S半圓柱
=(2×3+$\sqrt{{4}^{2}{+2}^{2}}$×3+2×$\frac{1}{2}$×2×4)+(π•22+π•2•3)
=14+6$\sqrt{5}$+10π.
故選:A.

點評 本題主要考查了利用三視圖求幾何體表面積的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{1}{x}+klnx$,k≠0.
(Ⅰ)當k=2時,求函數(shù)f(x)切線斜率中的最大值;
(Ⅱ)若關于x的方程f(x)=k有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某程序框圖如圖所示,則該程序運行后輸出的值是(  )
A.2B.-3C.5D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax3-3x2+1,若f(-a)、f(a)、f(3a)成公差不為0的等差數(shù)列,則過坐標原點作曲線y=f(x)的切線可以作( 。
A.0條B.1條C.2條D.3條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,過點P(2,1)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ,已知直線l與曲線C交于A、B兩點.
(1)求曲線C的直角坐標方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(-sinθ,0),$\overrightarrow{c}$=(cosθ,-1),且(2$\overrightarrow{a}$-$\overrightarrow$)∥$\overrightarrow{c}$,則tanθ等于-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+1|-|x-3|.
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)若不等式f(x)≥$\frac{|3m+1|-|1-m|}{|m+1|}$對任意實數(shù)m≠-1,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若α為銳角,sinα-mcosα=a(m>0),則msinα+cosα=$\sqrt{{m}^{2}+1{-a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.對于任意x∈R,函數(shù)f(x)表示y1=4x+1,y2=x+2,y3=-2x+4三個函數(shù)值的最小值,則f(x)的最大值是$\frac{8}{3}$.

查看答案和解析>>

同步練習冊答案