【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面.
(1)設(shè)為的中點,求證:平面;
(2)若與平面所成角的正切值為,求二面角的余弦值.
【答案】(1)見證明;(2)
【解析】
(1)推導(dǎo)出平面,從而,再求出,由此能證明平面.
(2)由平面,知即為與平面所成角,從而在直角中,,以為坐標(biāo)原點,分別以,所在的方向作為軸、軸的正方向,建立空間直角坐標(biāo)系.利用向量法能求出二面角的余弦值.
證明:(1)因為平面平面,
平面平面,平面,,
所以平面.
又平面,所以.
在等邊中,因為為的中點,所以.
因為,,,
所以平面.
(2)解:由(1)知平面,所以即為與平面所成角,
于是在直角中,.
以為坐標(biāo)原點,分別以,所在的方向作為軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系.
設(shè)等邊的邊長為,
則,,,,,
,,,.
設(shè)平面的一個法向量為,
則,即,
令,則,,于是.
設(shè)平面的一個法向量為,
則,即,
解得,令,則,于是.
所以.
由題意知二面角為銳角,所以二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當(dāng)k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的左右焦點分別為,橢圓的上頂點為點,點為橢圓上一點,且.
(1)求橢圓的離心率;
(2)若,過點的直線交橢圓于兩點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為2的正方體中,點M是對角線上的點(點M與A、不重合),則下列結(jié)論正確的個數(shù)為( )
①存在點M,使得平面平面;
②存在點M,使得平面;
③若的面積為S,則;
④若、分別是在平面與平面的正投影的面積,則存在點M,使得.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中,,過分別作,,垂足分別,,已知,將梯形沿同側(cè)折起,得空間幾何體 ,如圖.
1若,證明:平面;
2若,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com