12.若數(shù)列bn=$\frac{n-2}{{2}^{n}}$,如果對任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求實數(shù)t的取值范圍.

分析 對n分類討論,利用數(shù)列的單調(diào)性與一元二次不等式的解法即可得出.

解答 解:bn=$\frac{n-2}{{2}^{n}}$,
可得:b1=-$\frac{1}{2}$,b2=0,b3=$\frac{1}{8}$,
n≥3時,bn>0,bn+1-bn=$\frac{n-1}{{2}^{n+1}}$-$\frac{n-2}{{2}^{n}}$=$\frac{3-n}{{2}^{n+1}}$
∴n=3時,b3=b4,n≥4時,bn+1<bn,此時數(shù)列{bn}單調(diào)遞減,
因此n=3或4時,bn取得最大值$\frac{1}{8}$,
∵對任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,
∴$\frac{7}{8}$+$\frac{1}{8}$≤t2,
∴t≤-1或t≥1,
故t的取值范圍為(-∞,-1]∪[1,+∞)

點評 本題考查了數(shù)列的單調(diào)性與一元二次不等式的解法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù) y=f(x)的反函數(shù)為y=log2x,則 f(-1)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1:$\frac{{x}^{2}}{4}$+y2=1.
(1)若橢圓C2:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請說明理由;
(2)寫出與橢圓C1相似且焦點在x軸上、短半軸長為b的橢圓Cb的標(biāo)準(zhǔn)方程;若在橢圓Cb上存在兩點M、N關(guān)于直線y=x+1對稱,求實數(shù)b的取值范圍;
(3)如圖:直線y=x與兩個“相似橢圓”M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1和
Mλ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=λ2(a>bo,0<λ<1)分別交于點A,B和點C,D,試在橢圓M和橢圓Mλ上分別作出點E和點F(非橢圓頂點),使△CDF和△ABE組成以λ為相似比的兩個相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.點P在曲線E:y=ex上,若存在過P的直線交曲線E于另一點A,交直線l:y=x-1于點B,且|PA|=|AB|,則稱點P為“好點”,那么下列結(jié)論中正確的是( 。
A.曲線E上的所有點都是“好點”
B.曲線E上僅有有限個點是“好點”
C.曲線E上的所有點都不是“好點”
D.曲線E上有無窮多個點(但不是所有的點)是“好點”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.過橢圓x2+3y2=6上一點A(-$\sqrt{3}$,1),任作兩條傾斜角互補的直線,與橢圓相交于B、C兩點.
(1)求證直線BC的斜率為定值;
(2)求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:x2=2py(p>0),圓E:x2+(y+1)2=1,若直線L與拋物線C和圓E分別相切于點A,B(A,B不重合)
(Ⅰ)當(dāng)p=1時,求直線L的方程;
(Ⅱ)點F是拋物線C的焦點,若對于任意的p>0,記△ABF面積為S,求$\frac{S}{{\sqrt{p+1}}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,已知點P是圓錐母線SA的中點,Q是底面圓周上的點,M是線段PQ的中點,當(dāng)點Q在圓周上運動一周時,點M的軌跡是( 。
A.線段B.C.橢圓D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線l:x-3y+4=0與圓(x-a)2+y2=5相交于A、B兩點,設(shè)點P是直線l與x軸的交點,若點A恰好是線段PB的中點,則a=-4$±3\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.實數(shù)a,b滿足$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,則a+b=-1.

查看答案和解析>>

同步練習(xí)冊答案