【題目】我國是枇把生產(chǎn)大國,在對枇杷的長期栽培和選育中,形成了眾多的品種.成熟的枇杷味道甜美,營養(yǎng)頗豐,而且中醫(yī)認(rèn)為枇杷有潤肺、止咳、止渴的功效.因此,枇杷受到大家的喜愛.某果農(nóng)調(diào)查了枇杷上市時間與賣出數(shù)量的關(guān)系,統(tǒng)計如表所示:
結(jié)合散點(diǎn)圖可知,線性相關(guān).
(Ⅰ)求關(guān)于的線性回歸方程=(其中,用假分?jǐn)?shù)表示);
(Ⅱ)計算相關(guān)系數(shù),并說明(I)中線性回歸模型的擬合效果.
參考數(shù)據(jù):;
參考公式:回歸直線方程=中的斜率和截距的最小二乘法估計公式分別為:
;相關(guān)系數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點(diǎn),分別為曲線、曲線上的動點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,平面ABC外有一點(diǎn),點(diǎn)P到角的兩邊AC,BC的距離都等于,則PC與平面ABC所成角的正切值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點(diǎn)為極點(diǎn),為參數(shù)).在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線與曲線C交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式;寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式;
(2)認(rèn)定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn)..
(1)求證:平面平面;
(2),在線段上是否存在一點(diǎn),使得二面角的余弦值為.請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com