x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ | $\frac{7π}{3}$ | $\frac{17π}{6}$ |
f(x) | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
分析 (1)由表格提供的數(shù)據(jù)知$\left\{\begin{array}{l}{A+B=3}\\{-A+B=-1}\end{array}\right.$,且T=$\frac{2π}{ω}$=$\frac{17π}{6}-\frac{5π}{6}$,由此得到f(x)=2sin(x+φ)+1,再把($\frac{π}{3}$,1)代入,能求出f(x).
(2)y=f(kx)=2sin(kx-$\frac{π}{3}$)+1,由函數(shù)y=f(kx)(k>0)的最小正周期為$\frac{2π}{3}$得k=3,從而y=f(kx)=2sin(3x-$\frac{π}{3}$)+1,由此能求出實數(shù)m的取值范圍.
解答 解:(1)由表格提供的數(shù)據(jù)知:
$\left\{\begin{array}{l}{A+B=3}\\{-A+B=-1}\end{array}\right.$,且T=$\frac{2π}{ω}$=$\frac{17π}{6}-\frac{5π}{6}$,
解得A=2,B=1,ω=1,
∴f(x)=2sin(x+φ)+1,
把($\frac{π}{3}$,1)代入,得:2sin($\frac{π}{3}$+φ)+1=1,解得φ=-$\frac{π}{3}$,
∴f(x)=2sin(x-$\frac{π}{3}$)+1.
(2)y=f(kx)=2sin(kx-$\frac{π}{3}$)+1,
∵函數(shù)y=f(kx)(k>0)的最小正周期為$\frac{2π}{3}$,
∴T=$\frac{2π}{k}$=$\frac{2π}{3}$,解得k=3,
∴y=f(kx)=2sin(3x-$\frac{π}{3}$)+1,
∵x∈[0,$\frac{π}{3}$],∴3x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
sin(3x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1]
y=f(kx)=2sin(3x-$\frac{π}{3}$)+1)∈[1-$\sqrt{3}$,3]
當(dāng)x=$\frac{π}{3}$時,y=$\sqrt{3}$+1,
∴實數(shù)m的取值范圍是[1+$\sqrt{3}$,3).
點評 本題考查三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,0) | D. | (0,2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.4 | B. | 0.5 | C. | 0.6 | D. | 0.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosA | B. | sinA | C. | tanA | D. | sin2A |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com