8.在△ABC中,D是AC邊的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,則$\overrightarrow{BD}$=( 。
A.$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$B.$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$C.$\frac{1}{2}$$\overrightarrow b$-$\overrightarrow a$D.$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow a$

分析 利用平面向量的三角形法則將所求利用$\overrightarrow{a}$,$\overrightarrow$表示出來(lái),得到解答.

解答 解:由已知在△ABC中,D是AC邊的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,
則$\overrightarrow{BD}$=$\overrightarrow{AD}-\overrightarrow{AB}$=$\frac{1}{2}\overrightarrow{AC}-\overrightarrow{AB}$=$\frac{1}{2}\overrightarrow-\overrightarrow{a}$;
故選C.

點(diǎn)評(píng) 本題考查了平面向量的三角形法則的運(yùn)用;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若0≤α≤π,tanα>$\sqrt{3}$,則α的取值范圍是($\frac{π}{3}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)X為一個(gè)離散型隨機(jī)變量,其分布列為,
 X 0 1 2
 P $\frac{1}{2}$ q2 1-2q
則 q=1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.(2x+$\frac{a}{x}$)(x-$\frac{2}{x}$)5的展開(kāi)式中各項(xiàng)系數(shù)的和為-1,則該展開(kāi)式中常數(shù)項(xiàng)為( 。
A.-200B.-120C.120D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x+y≤4}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)部及其邊界上運(yùn)動(dòng),則z=-$\frac{1}{2}$x+y的最大值是( 。
A.1B.3C.$\frac{5}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了培養(yǎng)學(xué)生的數(shù)學(xué)建模和應(yīng)用能力,某校組織了一次實(shí)地測(cè)量活動(dòng),如圖,假設(shè)待測(cè)量的樹(shù)木AE的高度H(m),垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三點(diǎn)共線),試根據(jù)上述測(cè)量方案,回答如下問(wèn)題:
(1)若測(cè)得α=60°、β=30°,試求H的值;
(2)經(jīng)過(guò)分析若干次測(cè)得的數(shù)據(jù)后,大家一致認(rèn)為適當(dāng)調(diào)整標(biāo)桿到樹(shù)木的距離d(單位:m),使α與β之差較大時(shí),可以提高測(cè)量精確度.
若樹(shù)木的實(shí)際高度為8m,試問(wèn)d為多少時(shí),α-β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{\frac{1}{3}},x≤a}\\{x,x>a}\end{array}\right.$存在反函數(shù),則實(shí)數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)復(fù)數(shù)z滿足|z|=$\sqrt{13}$,且(2+3i)z(i是虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知圓O以AB為直徑,半徑為1.若圓O上有長(zhǎng)度為1的動(dòng)弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的取值范圍是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案