4.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,P為A1D1的中點,Q為A1B1上任意一點,E,F(xiàn)為CD上任意兩點,且EF的長為定值,則下面的四個值中不為定值的是( 。
A.點Q到平面PEF的距離B.直線PE與平面QEF所成的角
C.三棱錐P-QEF的體積D.二面角P-EF-Q的大小

分析 根據(jù)線面平行的性質(zhì)可以判斷A答案的對錯;根據(jù)線面角的定義,可以判斷C的對錯;根據(jù)等底同高的三角形面積相等及A的結(jié)論結(jié)合棱錐的體積公式,可判斷B的對錯;根據(jù)二面角的定義可以判斷D的對錯,進(jìn)而得到答案.

解答 解:A中,取B1C1的中點M,∵QEF平面也就是平面PDCM,Q和平面PDCM都是固定的,∴Q到平面PEF為定值;
B中,∵P是動點,EF也是動點,推不出定值的結(jié)論,∴就不是定值.∴直線PE與平面QEF所成的角不是定值;
C中,∵△QEF的面積是定值.(∵EF定長,Q到EF的距離就是Q到CD的距離也為定長,即底和高都是定值),
再根據(jù)A的結(jié)論P到QEF平面的距離也是定值,∴三棱錐的高也是定值,于是體積固定.∴三棱錐P-QEF的體積是定值;
D中,∵A1B1∥CD,Q為A1B1上任意一點,E、F為CD上任意兩點,∴二面角P-EF-Q的大小為定值.
故選:B.

點評 本題考查的知識點是直線與平面所成的角,二面角,棱錐的體積及點到平面的距離,其中兩線平行時,一條線的上的點到另一條直線的距離相等,線面平行時直線上到點到平面的距離相等,平面平行時一個平面上的點到另一個平面的距離相等是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函數(shù)g(x)=f(x)+2x-a有三個零點,則實數(shù)a的取值范圍是( 。
A.(0,+∞)B.(-∞,-1)C.(-∞,-3)D.(0,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,M∈C,以M為圓心的圓M與準(zhǔn)線l相切于點Q,Q點的縱坐標(biāo)為$\sqrt{3}p$,E(5,0)是圓M與x軸不同于F的另一個交點,則p=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x>2m2-3是-1<x<4的必要不充分條件,則實數(shù)m的取值范圍是(  )
A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,CE⊥平面ABCD,CE=AB,PD=λCE(λ>1)
(1)求證:PE⊥AD
(2)若該幾何體的體積被平面BED分成VB-CDE:V多面體ABDEP=1:4的兩部分,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線E:y2=8x,圓M:(x-2)2+y2=4,點N為拋物線E上的動點,O為坐標(biāo)原點,線段ON的中點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點Q(x0,y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于A,B兩點,求△QAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosφ\\ y=sinφ\end{array}\right.$,(其中φ為參數(shù)),曲線${C_2}:{x^2}+{y^2}-2y=0$,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1,C2分別交于點A,B(均異于原點O)
(1)求曲線C1,C2的極坐標(biāo)方程;
(2)當(dāng)$0<a<\frac{π}{2}$時,求|OA|2+|OB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B1上的一點,且A1G=λ(0≤λ≤1),則點G到平面D1EF的距離為$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求函數(shù)f(x)=($\frac{1}{2}$)${\;}^{-{x}^{2}+4x+1}$(0≤x≤3)的值域;
(2)已知二次函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案