1.某運(yùn)動(dòng)隊(duì)對(duì)A,B,C,D四位運(yùn)動(dòng)員進(jìn)行選拔,只選一人參加比賽,在選拔結(jié)果公布前,甲、乙、丙、丁四位教練對(duì)這四位運(yùn)動(dòng)員預(yù)測(cè)如下:甲說(shuō):“是C或D參加比賽”;  乙說(shuō):“是B參加比賽”;丙說(shuō):“是A,D都未參加比賽”;  丁說(shuō):“是C參加比賽”.若這四位教練中只有兩位說(shuō)的話是對(duì)的,則獲得參賽的運(yùn)動(dòng)員是B.

分析 根據(jù)題意,依次假設(shè)參賽的運(yùn)動(dòng)員為A、B、C、D,判斷甲、乙、丙、丁的說(shuō)法的正確性,即可判斷.

解答 解:根據(jù)題意,A,B,C,D四位運(yùn)動(dòng)員進(jìn)行選拔,只選一人參加比賽,
假設(shè)參賽的運(yùn)動(dòng)員為A,則甲、乙、丙、丁的說(shuō)法都錯(cuò)誤,不符合題意;
假設(shè)參賽的運(yùn)動(dòng)員為B,則甲、丁的說(shuō)法都錯(cuò)誤,乙、丙的說(shuō)法正確,符合題意;
假設(shè)參賽的運(yùn)動(dòng)員為C,則乙的說(shuō)法都錯(cuò)誤,甲、丙、丁的說(shuō)法正確,不符合題意;
假設(shè)參賽的運(yùn)動(dòng)員為D,則乙、丙、丁的說(shuō)法都錯(cuò)誤,甲的說(shuō)法正確,不符合題意;
故獲得參賽的運(yùn)動(dòng)員是B;
故選:B.

點(diǎn)評(píng) 本題考查了合情推理的問(wèn)題,注意“這四位教練中只有兩位說(shuō)的話是對(duì)”的之一條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知拋物線y2=2px(p>0)上的點(diǎn)到焦點(diǎn)的距離的最小值為2,過(guò)點(diǎn)(0,1)的直線l與拋物線只有一個(gè)公共點(diǎn),則焦點(diǎn)到直線l的距離為( 。
A.1或$\sqrt{2}$或2B.1或2或$\sqrt{5}$C.2或$\sqrt{2}$D.2或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{m•{4^x}+1}}{2^x}$是偶函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若關(guān)于x的不等式2k•f(x)>3k2+1在(-∞,0)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知正四面體ABCD的四個(gè)頂點(diǎn)都在球心為O的球面上,點(diǎn)P為棱BC的中點(diǎn),$BC=6\sqrt{2}$,過(guò)點(diǎn)P作球O的截面,則截面面積的最小值為18π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點(diǎn),且直線MN恰好通過(guò)橢圓C的右焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)A為橢圓的右頂點(diǎn),經(jīng)過(guò)原點(diǎn)的直線和橢圓C交于B,D兩點(diǎn),設(shè)直線AB與AD的斜率分別為k1,k2.問(wèn)k1•k2是否為定值?若為定值,請(qǐng)求出;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)) 以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,曲線C的極坐標(biāo)方程為ρ=4cosθ
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于點(diǎn)A,B,且|AB|=$\sqrt{14}$,求直線的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某單位280名員工參加“我愛(ài)閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
( I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數(shù)分別是多少?
( II)為了交流讀書(shū)心得,現(xiàn)從上述12人中再隨機(jī)抽取3人發(fā)言,設(shè)3人中年齡在[35,40)的人數(shù)為ξ,求ξ的數(shù)學(xué)期望;
( III)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對(duì)從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國(guó)學(xué)類(lèi)書(shū)籍”進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)
喜歡閱讀國(guó)學(xué)類(lèi) 不喜歡閱讀國(guó)學(xué)類(lèi) 合計(jì)
 男 14 4 18
 女 8 14 22
 合計(jì) 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該單位員工是否喜歡閱讀國(guó)學(xué)類(lèi)書(shū)籍和性別有關(guān)系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知菱形ABCD的邊長(zhǎng)為2,∠ABC=60°,點(diǎn)E滿足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,則$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合U={0,1,2,3,4},A={0,1,3},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{2,3,4}C.{3}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案