20.在△ABC中,∠B=90°,$\overrightarrow{AB}=({1\;\;,\;\;-2})$,$\overrightarrow{AC}=({3\;\;,\;\;λ})$,則λ=( 。
A.-1B.1C.$\frac{3}{2}$D.4

分析 根據(jù)平面向量的三角形法則求出$\overrightarrow{BC}$,再由$\overrightarrow{AB}$⊥$\overrightarrow{BC}$得出$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,列出方程求出λ的值.

解答 解:△ABC中,$\overrightarrow{AB}=({1\;\;,\;\;-2})$,$\overrightarrow{AC}=({3\;\;,\;\;λ})$,
∴$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=(2,λ+2),
又∠B=90°,∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,
即2-2(λ+2)=0,
解得λ=-1.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的線性運(yùn)算與數(shù)量積運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若${(x+\frac{2}{x})^n}$的二項(xiàng)展開式的各項(xiàng)系數(shù)之和為729,則該展開式中常數(shù)項(xiàng)的值為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在△ABC中,$B=\frac{π}{6}$,BC邊上的高等于$\frac{{\sqrt{3}}}{9}BC$,則cosA=( 。
A.$\frac{{5\sqrt{13}}}{26}$B.$-\frac{{5\sqrt{13}}}{26}$C.$-\frac{{3\sqrt{39}}}{26}$D.$\frac{{3\sqrt{39}}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若點(diǎn)(x,y)位于曲線y=|2x-1|與y=3所圍成的封閉區(qū)域內(nèi)(包含邊界),則2x-y的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大;
(2)若sin(A-$\frac{π}{3}$)=$\frac{3}{5}$,求sin2C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,$A({0\;\;,\;\;\sqrt{3}})$,拋物線C上的點(diǎn)B滿足AB⊥AF,且|BF|=4,則p=2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,角A,B,C對(duì)應(yīng)邊分別為a,b,c,已知三個(gè)向量$\overrightarrow m=(a,cos\frac{A}{2})$,$\overrightarrow n=(b,cos\frac{B}{2})$,$\overrightarrow p=(c,cos\frac{C}{2})$共線,則△ABC形狀為( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)$f(x)=lnx-x+\frac{1}{x}$,若$a=f({\frac{1}{3}})$,b=f(π),c=f(5),則( 。
A.c<b<aB.c<a<bC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的圖象上關(guān)于直線x=1對(duì)稱的點(diǎn)有且僅有一對(duì),則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$}B.[$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$}C.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$}D.[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案