5.數(shù)列{an}中,a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,則a2017=$\frac{2}{4033}$.

分析 求關系式的倒數(shù),得到新數(shù)列是等差數(shù)列,然后求解通項公式,求解即可.

解答 解:數(shù)列{an}中,a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,
可得$\frac{1}{{a}_{n+1}}=1+\frac{1}{{a}_{n}}$,所以{$\frac{1}{{a}_{n}}$}是以$\frac{1}{2}$為首項,1為公差的等差數(shù)列,
所以$\frac{1}{{a}_{n}}=\frac{1}{2}+n-1$,
可得an=$\frac{2}{2n-1}$,
則a2017=$\frac{2}{4033}$.
故答案為:$\frac{2}{4033}$.

點評 本題考查數(shù)列的遞推關系式的應用,數(shù)列的通項公式的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合A={-2,-1,0,1,2},集合B={x|x(x+3)<0},則A∩B等于( 。
A.{-1,0,1,2}B.{-2,-1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,平行四邊形OADB的對角線OD、AB相交于點C,線段BC上有一點M滿足BC=3BM,線段CD上有一點N滿足CD=3CN,設$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,試用a,b表示$\overrightarrow{OM}$,$\overrightarrow{ON}$,$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出以下命題:
①雙曲線$\frac{{y}^{2}}{2}$-x2=1的漸近線方程為y=±$\sqrt{2}$x;
②函數(shù)f(x)=lgx-$\frac{1}{x}$的零點所在的區(qū)間是(1,10);
③已知線性回歸方程為$\stackrel{∧}{y}$=3+2x,當變量x增加2個單位,其預報值平均增加4個單位;
④已知隨機變量X服從正態(tài)分布N(0,1),且P(-1≤X≤1)=m,則P(X<-1)=1-m
則正確命題的序號為①②③.(寫出所有正確題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}-({2a+1})x+2lnx$.
(1)若函數(shù)y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)若a>0,求函數(shù)y=f(x)的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=1$,且$|{\overrightarrow a+k\overrightarrow b}|=\sqrt{3}|{k\overrightarrow a-\overrightarrow b}|(k>0)$,令$f(k)=\overrightarrow a•\overrightarrow b$.
(1)求$f(k)=\overrightarrow a•\overrightarrow b$(用k表示);
(2)當k>0時,$f(k)≥{x^2}-2tx-\frac{5}{2}$對任意的t∈[-2,2]恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.為了了解青少年的肥胖情況是否與常喝碳酸飲料有關,現(xiàn)對30名青少年進行調查,得到如下列聯(lián)表:
常喝不常喝總計
肥胖2
不肥胖18
總計30
已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為$\frac{4}{15}$.
(1)請將上面的列聯(lián)表補充完整.
(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
(3)若這30名青少年中,常喝碳酸飲料且肥胖的有2名女生,則從常喝碳酸飲料且肥胖的青少年中隨機抽取2名,恰好抽到一男一女的概率是多少?
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a-b)(c+d)(a-c)(b+d)}$,其中n=a+b+c+d)
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知命題p:函數(shù)y=x2-4mx+m在[8,+∞)上為增函數(shù);命題q:x2-mx+2m-3=0有兩個不相等的實根,若“p∧q”為假,“p∨q”為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設等比數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)設bn=log2an,證明數(shù)列{bn}是等差數(shù)列;
(3)設cn=(-1)nbn,求T=|c1|+|c2|+|c3|+…+|cn|.

查看答案和解析>>

同步練習冊答案