1.若集合A={-2,-1,0,1,2},集合B={x|x(x+3)<0},則A∩B等于( 。
A.{-1,0,1,2}B.{-2,-1}C.{1,2}D.{0,1,2}

分析 由一元二次不等式的解法求出集合B,由交集的運(yùn)算求出A∩B.

解答 解:∵集合B={x|x(x+3)<0}={x|-3<x<0},
集合A={-2,-1,0,1,2},
∴A∩B={-2,-1},
故選B.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列結(jié)論正確的是( 。
A.若ac>bc,則a>bB.若a2>b2,則a>b
C.若a>b,c<0,則a+c<b+cD.若$\sqrt{a}$<$\sqrt$,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}$,(t為參數(shù),0<α<π),曲線C的極坐標(biāo)方程ρ=$\frac{2cosθ}{si{n}^{2}θ}$.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)α=$\frac{π}{3}$,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.等差數(shù)列{an}共有2n+1項(xiàng),其中奇數(shù)項(xiàng)之和為319,偶數(shù)項(xiàng)之和為290,則其中間項(xiàng)為(  )
A.28B.29C.30D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過(guò)點(diǎn)F2且斜率為$\frac{2b}{a}$的直線l交直線2bx+ay=0于M,若M在以線段F1F2為直徑的圓上,則橢圓的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,a=$\sqrt{3}$,A=120°,b=1,則角B的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=$\frac{lnx}{x}$在點(diǎn)(m,f(m))處的切線平行于x軸,則實(shí)數(shù)m=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,在?ABCD中,AE:EB=1:2,若S△AEF=6cm2,則S△CDF為( 。
A.54cm2B.24cm2C.18cm2D.12cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.?dāng)?shù)列{an}中,a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,則a2017=$\frac{2}{4033}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案