分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,再由兩直線平行的條件:斜率相等,可得m的方程,解方程即可得到所求值.
解答 解:由函數(shù)y=$\frac{lnx}{x}$,得導(dǎo)數(shù)f′(x)=$\frac{1-lnx}{{x}^{2}}$,
可得切線的斜率為k=$\frac{1-lnm}{{m}^{2}}$,
由切線平行于x軸,可得k=$\frac{1-lnm}{{m}^{2}}$=0,
得1-lnm=0,即m=e,
故答案為:e.
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,以及兩直線平行的條件:斜率相等,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 |
語文成績x | 60 | 70 | 74 | 90 | 94 | 110 |
歷史成績y | 58 | 63 | 75 | 79 | 81 | 88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1,2} | B. | {-2,-1} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α>β,則sinα>sinβ | |
B. | 命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1” | |
C. | 已知函數(shù)f(x)=x3+ax2+bx+c,若f(x)在區(qū)間(-1,0)上單調(diào)遞減,則a2+b2的取值范圍為$[{\frac{9}{5},+∞})$ | |
D. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{CA}$ | B. | $\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{BD}$ | C. | $\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$ | D. | $\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{BD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1或3 | B. | 1或5 | C. | -1或-5 | D. | 2或6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
常喝 | 不常喝 | 總計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計 | 30 |
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com