20.如圖,在正方體ABCD-A1B1C1D1中,點P在正方體表面運動,如果${S_{△AB{D_1}}}={S_△}_{PB{D_1}}$,那么這樣的點P共有(  )
A.2個B.4個C.6個D.無數(shù)個

分析 根據(jù)正方體的對稱性可判定點P的個數(shù).

解答 解:根據(jù)正方體的對稱性可得到正方體表面上,A、C、D、A1,B1,C1到線段BD1的距離相等
可判定點P的個數(shù)為6個.
故選:C

點評 本題考查了正方體的性質(zhì)及點到線的距離,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列有關(guān)回歸分析的論斷:
①相關(guān)系數(shù)r是衡量兩個變量之間線性關(guān)系強(qiáng)弱的量,|r|越接近1,這兩個變量線性相關(guān)關(guān)系越弱,|r|越接近0,線性相關(guān)關(guān)系越強(qiáng);
②隨機(jī)誤差e的均值為0,它的方差σ2越小,預(yù)報真實值的精度越高;
③殘差圖的帶狀區(qū)域的寬度越窄,模型擬合的精度越髙,回歸方程的預(yù)報精度越高;
④在回歸模型中,x只能解釋部分y的變化,故x稱為解釋變量,y稱為預(yù)報變量,其中所有正確論斷的序號是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域為[-2,6],x與f(x)部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f(x)的圖象如圖所示.
 x-2 5
 f(x)-2-2  3
下列結(jié)論:
①函數(shù)f(x)在(0,3)上是增函數(shù);
②曲線y=f(x)在x=4處的切線可能與y軸垂直;
③如果當(dāng)x∈[-2,t]時,f(x)的最小值是-2,那么t的最大值為5;
④?x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,則實數(shù)a的最小值是5,其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知角α的終邊在直線y=$\frac{4}{3}$x上,則cosα-sinα的值等于( 。
A.$\frac{4}{3}$B.-$\frac{1}{5}$或$\frac{1}{5}$C.-$\frac{3}{4}$或$\frac{3}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某校男女籃球隊各有10名隊員,現(xiàn)將這20名隊員的身高繪制成莖葉圖(單位:cm).男隊員身高在180cm以上定義為“高個子”,女隊員身高在170cm以上定義為“高個子”,其他隊員定義為“非高個子”.按照“高個子”和“非高個子”用分層抽樣的方法共抽取5名隊員.
(1)從這5名隊員中隨機(jī)選出2名隊員,求這2名隊員中有“高個子”的概率;
(2)求這5名隊員中,恰好男女“高個子”各1名隊員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.由a1=1,d=3確定的等差數(shù)列{an},當(dāng)an=298,序號n等于( 。
A.96B.98C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列函數(shù)的導(dǎo)數(shù):
(1)y=2x5-3x2-4
(2)y=3cos x-4sin x
(3)y=(2x+3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,AB=2,AC=3,A=60°,則BC=( 。
A.$\sqrt{6}$B.$\sqrt{7}$C.$\sqrt{19}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知函數(shù)f(x)=alnx-$\frac{1}{2}$x2 (a∈R).
(Ⅰ)求a=l時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)討論f(x)在定義域上的零點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案