12.“漸升數(shù)”是指正整數(shù)中每個數(shù)字比其左邊的數(shù)字大的數(shù),如:24578,則五位“漸升數(shù)”共有126個.

分析 分析可得“漸升數(shù)”中不能有0,則可以在其他9個數(shù)字中任取5個,按從小到大的順序排成一列,即可以組成一個“漸升數(shù)”,即每種取法對應一個“漸升數(shù)”,由組合數(shù)公式計算C95即可得答案,

解答 解:根據(jù)題意,“漸升數(shù)”中不能有0,
則在其他9個數(shù)字中任取5個,每種取法對應一個“漸升數(shù)”,
則共有“漸升數(shù)”C95=126個.
故答案為:126.

點評 本題考查排列、組合的應用,關(guān)鍵是理解“漸升數(shù)”的含義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若MP和OM分別是角α=$\frac{7π}{8}$的正弦線和余弦線,那么下列結(jié)論中正確的是( 。
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,則cos(π-2α)=$-\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知P(-$\frac{4}{5}$,$\frac{3}{5}$)是角終邊上一點,則2sinα+cosα的值等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.拋物線x=$\frac{1}{4m}$y2的焦點坐標是(m,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三點不能構(gòu)成三角形,則實數(shù)k應滿足的條件是( 。
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.觀察如表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,

問:(1)此表第n行的最后一個數(shù)是多少?
(2)此表第n行的各個數(shù)之和是多少?
(3)2 018是第幾行的第幾個數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.為了估計某人的射擊技術(shù)情況,在他的訓練記錄中抽取50次檢驗,他的命中環(huán)數(shù)如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出頻率分布表
(2)畫出頻率分布的直方圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{a}{{x}^{2}}$+lnx,g(x)=x3-x2-3.
(1)函數(shù)f(x)在區(qū)間[1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若存在x1,x2∈[-$\frac{1}{3}$,3],使得g(x1)-g(x2)≥M成立,求滿足條件的最大整數(shù)M;
(3)如果對任意的s,t∈[$\frac{1}{3}$,2]都有sf(s)≥g(t)成立,求實數(shù)a的范圍.

查看答案和解析>>

同步練習冊答案