【題目】在①,②,③這三個條件中任選一個,補充在下面問題中.已知:數(shù)列的前項和為,且   .求:對大于1的自然數(shù),是否存在大于2的自然數(shù),使得,成等比數(shù)列.若存在,求的最小值;若不存在,說明理由.

【答案】答案不唯一,見解析

【解析】

因為要使得,,成等比數(shù)列,不妨選擇,分析可知數(shù)列是首項為1,公差為3的等差數(shù)列,進而得到,從而計算,再根據(jù)二次函數(shù)的最值分析的最小值即可.

,,即,

可得數(shù)列是首項為1,公差為3的等差數(shù)列,

,

假設對大于1的自然數(shù),存在大于2的自然數(shù),使得,,成等比數(shù)列,

可得,即,

兩邊平方可得,

,且遞增,可得時,取得最小值6,

可得此時取得最小值6,

故存在大于2的自然數(shù),使得,,成等比數(shù)列,且的最小值為6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結論:

;平面

三棱錐的體積為定值;異面直線所成的角為定值,

其中正確結論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程有實數(shù)根,則稱為函數(shù)的一個不動點.已知函數(shù).

1)若,求證:有唯一不動點;

2)若有兩個不動點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個半徑為2的鋼球內放置一個用來盛特殊液體的正四棱柱容器,要使該容器所盛液體盡可能多,則該容器的高應為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司準備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進行連續(xù)30天的試銷.定價為1000/.試銷結束后統(tǒng)計得到該4S店這30天內的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個零件的進價為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結束后,這款零件正式上市,每個定價仍為1000元,但生產公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550/件;小箱每箱有45件,批發(fā)價為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當天沒銷售出的零件按批發(fā)價的9折轉給該公司的另一下屬4S.假設該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O該4S店試銷結束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結束后連續(xù)30天每天應該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.

(1)若,求直線與直線所成的角;

(2)若二面角的大小為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長為3的線段的兩端點,分別在軸和軸上移動,.

1)求點的軌跡的方程.

2)過作互相垂直的兩條直線分別與軌跡交于,,設中點為中點為,試探究直線是否過定點?若是,求出該定點;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)當時,求曲線在點處的切線方程;

2)若函數(shù)存在最小值,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)log4(4x1)kx(k∈R)是偶函數(shù).

(1)k的值;

(2)g(x)log4,若函數(shù)f(x)g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案