12.已知x、y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,若x2+y2的最大值為m,最小值為n,則mx+ny的最小值為22.

分析 作出不等式組對應的平面區(qū)域,利用點到直線的距離公式以及直線的截距的幾何意義進行轉化求解即可.

解答 解:作出不等式組對應的平面區(qū)域如圖,
x2+y2的幾何意義是區(qū)域內的點到原點的距離的平方,
由圖象知O到直線x+y-3=0的距離最小,
此時d=$\frac{|-3|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,
則d2=$\frac{9}{2}$,即n=$\frac{9}{2}$,
OA的距離最大,
由$\left\{\begin{array}{l}{x=2}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
則m=22+32=4+9=13,
則設z=mx+ny=13x+$\frac{9}{2}$y,
即y=-$\frac{26}{9}$x+$\frac{2}{9}$z,
平移直線y=-$\frac{26}{9}$x+$\frac{2}{9}$z,
由圖象知當直線經過點B時,直線的截距最小,此時z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-3=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2),
此時z=13×1+$\frac{9}{2}$×2=13+9=22,
故答案為:22

點評 本題主要考查線性規(guī)劃的應用,結合點到直線的距離公式求出距離的最小值和最大值,以及利用直線的截距的幾何意義是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的極值點的個數(shù);
(Ⅱ)若函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象有兩個不同的交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點.
(I)求證:EM⊥AD;
(II)求二面角A-BE-C的余弦值;
(III)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為45°,若存在,求出$\frac{EP}{EC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知平面區(qū)域D={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$},Z=$\frac{y}{x+2}$.若命題“?(x,y)∈D,Z≥m”為真命題,則實數(shù)m的最大值為(  )
A.$\frac{22}{15}$B.$\frac{2}{7}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設全集U=R,集合A={x|x≥2},B={x|0≤x<6},則集合(∁UA)∩B=(  )
A.{x|0<x<2}B.{x|0<x≤2}C.{x|0≤x<2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知銳角α滿足cosα=$\frac{{\sqrt{5}}}{5}$,則tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等邊三角形PAB的邊長為4,四邊形ABCD為正方形,平面PAB⊥平面ABCD,E,F(xiàn),G,H分別是線段AB,CD,PD,PC上的點.

(1)如圖①,若G為線段PD的中點,BE=DF=1,證明:PB∥平面EFG;
(2)如圖②,若E,F(xiàn)分別是線段AB,CD的中點,DG=3GP,GH=$\frac{1}{3}$HP,求二面角H-EF-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在(2x-3)5•(4-x-1)的展開式中含(2x2的項為255.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知y2=4x拋物線,焦點記為F,過點F作直線l交拋物線于A,B兩點,則$|{AF}|-\frac{2}{{|{BF}|}}$的最小值為(  )
A.$2\sqrt{2}-2$B.$\frac{5}{6}$C.$3-\frac{3}{2}\sqrt{2}$D.$2\sqrt{3}-2$

查看答案和解析>>

同步練習冊答案