【題目】平面外ABC的一點P,AP、AB、AC兩兩互相垂直,過AC的中點D做ED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體B﹣PADE的體積是;
(1)畫出面PBE與面ABC的交線,說明理由;
(2)求面PBE與面ABC所成的銳二面角的大。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若,,求的單凋區(qū)間;
(2)若函數(shù)是函數(shù)的圖像的切線,求的最小值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,北京世界園藝博覽會開幕,為了保障園藝博覽會安全順利地進行,某部門將5個安保小組全部安排到指定的三個不同區(qū)域內值勤,則每個區(qū)域至少有一個安保小組的排法有( )
A.150種B.240種C.300種D.360種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)且).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的極坐標方程及曲線的直角坐標方程;
(2)若點在直線上,點在曲線上,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標原點O為極點,x軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
求曲線的極坐標方程和曲線的直角坐標方程;
若射線l:與曲線,的交點分別為A,B異于原點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求證:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構思提出后,某科技企業(yè)為抓住“一帶一路”帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設備.生產(chǎn)這種設備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當年產(chǎn)量不足60臺時,萬元;當年產(chǎn)量不小于60臺時,萬元若每臺設備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設備能全部售完.
求年利潤萬元關于年產(chǎn)量臺的函數(shù)關系式;
當年產(chǎn)量為多少臺時,該企業(yè)在這一電子設備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標準方程,
(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com