14.如圖,在△ABC中,M是邊BC的中點,cos∠BAM=$\frac{{5\sqrt{7}}}{14}$,tan∠AMC=-$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC=$\frac{π}{6}$,BC邊上的中線AM的長為$\sqrt{21}$,求△ABC的面積.

分析 (Ⅰ)根據(jù)三角形的性質(zhì)和內(nèi)角和的定理,轉(zhuǎn)化為和與差公式求解即可.
(Ⅱ)利用余弦定理求解出BM,即可求解△ABC的面積

解答 解:(Ⅰ)由$cos∠BAM=\frac{{5\sqrt{7}}}{14}$,
得:$sin∠BAM=\frac{{\sqrt{21}}}{14}$,
∴$tan∠BAM=\frac{{\sqrt{3}}}{5}$.
又∠AMC=∠BAM+∠B,
∴$tanB=tan(∠AMC-∠BAM)=\frac{tan∠AMC-tan∠BAM}{1+tan∠AMCtan∠BAM}$=$\frac{{-\frac{{\sqrt{3}}}{2}-\frac{{\sqrt{3}}}{5}}}{{1-\frac{{\sqrt{3}}}{2}•\frac{{\sqrt{3}}}{5}}}=-\sqrt{3}$;
又B∈(0,π),
∴$B=\frac{2π}{3}$.
(Ⅱ)由(Ⅰ)知$B=\frac{2π}{3}$.角∠BAC=$\frac{π}{6}$,
∴C=$\frac{π}{6}$.
則AB=BC.
設MB=x,
則AB=2x.
在△ABM中由余弦定理,得AM2=AB2+MB2-2AB•BMcosB,即7x2=21.
解得:$x=\sqrt{3}$.
故得△ABC的面積${S_{△ABC}}=\frac{1}{2}×4{x^2}×sin\frac{2π}{3}=3\sqrt{3}$.

點評 本題考查了三角形的性質(zhì)的運用和余弦定理的計算.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.在極坐標系中,已知直線l的方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲線C的方程為ρ=4sinθ,若直線l與曲線C相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)$f(x)=mlnx+\frac{n}{x}$,曲線y=f(x)在點(1,f(1))處的切線方程為y=x-1.
(1)求實數(shù)m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,試判斷A,B兩者是否有確定的大小關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P點在底面ABCD內(nèi)的射影E在線段AB上,且PE=2,BE=2EA,M在線段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)證明:CE⊥平面PAB;
(Ⅱ)在線段AD上確定一點F,使得平面PMF⊥平面PAB,并求三棱錐P-AFM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若直線y=k(x+2)上存在點(x,y)滿足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,則實數(shù)k的取值范圍是( 。
A.$[{-1,-\frac{1}{4}}]$B.$[{-1,\frac{1}{5}}]$C.$({-∞,-1}]∪[{\frac{1}{5},+∞})$D.$[{-\frac{1}{4},\frac{1}{5}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},則集合A∩B=( 。
A.{1,2}B.{x|0≤x≤1}C.{(1,2)}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.sin2040°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若f(x)=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域是R,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.對于數(shù)據(jù)3,3,2,3,6,3,10,3,6,3,2.
①這組數(shù)據(jù)的眾數(shù)是3;
②這組數(shù)據(jù)的眾數(shù)與中位數(shù)的數(shù)值不相等;
③這組數(shù)據(jù)的中位數(shù)與平均數(shù)的數(shù)值相等;
④這組數(shù)據(jù)的平均數(shù)與眾數(shù)的值相等.
其中正確的結(jié)論的個數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案