分析 (1)求出函數的導數,得到關于a,b的方程組,解出即可;
(2)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間即可;
(3)根據函數的單調性求出函數的最大值和最小值即可.
解答 解:(1)f′(x)=6x2+6ax+3b,
∵函數在x=1及x=2時取得極值,
∴$\left\{\begin{array}{l}{f′(1)=6+6a+3b=0}\\{f′(2)=24+12a+3b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-3}\\{b=4}\end{array}\right.$;
(2)由(1)得f(x)=2x3-9x2+12x,
f′(x)=6(x2-3x+2),
令f′(x)>0,解得:x>2或x<1,
令f′(x)<0,解得:1<x<2,
故f(x)在(-∞,1)遞增,在(1,2)遞減,在(2,+∞)遞增;
(3)由(2)得函數在x=1,x=2處取得極值,
故f(0)=0,f(1)=5,f(2)=4,f(4)=32,
故函數f(x)的最大值是32,最小值是0.
點評 本題考查了函數的單調性、最值問題,考查導數的應用,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com