15.已知復(fù)數(shù)x滿足x+$\frac{1}{x}$=-1,則x2013+$\frac{1}{{{x^{2013}}}}$=2.

分析 由題意可得x3=1,因?yàn)?013能夠被3整除,所以x2013=1,問題得以解決.

解答 解:∵$x+\frac{1}{x}=-1$,
∴x2+x+1=0,
∴(x-1)(x2+x+1)=x3-1=0,
∴x3=1,
∵2013能夠被3整除,
∴x2013=1,
∴x2013+$\frac{1}{{{x^{2013}}}}$=1+1=2,
故答案為:2

點(diǎn)評(píng) 本題考查了方程的解得問題,以及指數(shù)冪的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.${∫}_{0}^{1}$e-xdx=1-$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列表示正確的是( 。
A.{1}∈{1,3}B.1⊆{1,2}C.∅∈{0}D.∅⊆∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={ x|$\frac{1}{x-1}$≥1},集合B={ x|log2x<1},則 A∩B=( 。
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“若f(x)在區(qū)間D上是凸函數(shù),則對(duì)于區(qū)間D內(nèi)的任意x1,x2,…,xn,有$\frac{1}{n}[{f({x_1})+f({x_2})++f(x_n^{\;})}]≤f(\frac{{{x_1}+{x_2}++{x_n}}}{n})$”設(shè)f(x)=sinx在(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值是( 。
A.$\frac{3}{2}$B.$\frac{1}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=($\frac{{a}_{n}+1}{2}$)2,數(shù)列{bn}滿足b1=2,bn≠0,等式bn2=bn+1bn-1對(duì)任意的n≥2恒成立,且S2=b2
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)將數(shù)列{an}與{bn}的項(xiàng)相間排列構(gòu)成新數(shù)列a1,b1,a2,b2,a3,b3,…,
①求這個(gè)新數(shù)列{cn}的通項(xiàng)公式和前2n項(xiàng)的和T2n
②若對(duì)任意正整數(shù)n都有Tn≥λcn,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=-1$的漸近線方程為(  )
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{16}{9}x$D.$y=±\frac{9}{16}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$,點(diǎn)F1,F(xiàn)2分別為其左右焦點(diǎn),離心率為e,直線l:y=ex+a與x軸、y軸分別交于A,B兩點(diǎn),點(diǎn)M是直線l與橢圓C的一個(gè)公共點(diǎn),設(shè)$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(1)證明:λ=1-e2;
(2)若λ=$\frac{3}{4}$,△MF1F2的周長為6,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AC=AB1
(1)證明:AB⊥B1C;
(2)若∠CAB1=90°,∠CBB1=60°,AB=BC=2,求三棱錐B1-ACB的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案