分析 (1)判斷直線與橢圓的位置關(guān)系,求出切點(diǎn)坐標(biāo),利用$\overrightarrow{AM}=λ\overrightarrow{AB}$.化簡(jiǎn)求解即可.
(2)利用(1)以及△MF1F2的周長(zhǎng)為6,求出橢圓的幾何量,然后求解橢圓方程.
解答 解:(1)證明:橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$,
直線l:y=ex+a,消去y并化簡(jiǎn)可得x2+2cx+c2=0,
可得x=-c,△=0,可知直線與橢圓相切,
切點(diǎn)坐標(biāo)(-c,$\frac{^{2}}{a}$),A(-$\frac{{a}^{2}}{c}$,0),B(0,a),
由$\overrightarrow{AM}=λ\overrightarrow{AB}$.可得:
λ=$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}$=1-e2.
(2)由$\left\{\begin{array}{l}{1-{e}^{2}=\frac{3}{4}}\\{2a+2c=6}\end{array}\right.$,解得a=2,c=1,可得b2=3,
所以所求橢圓方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 1 | 2 | 1.5 | 1.75 | 1.625 | 1.6875 |
f(x) | -5.00 | 4.00 | -1.63 | 0.86 | -0.46 | 0.18 |
A. | 1.50 | B. | 1.66 | C. | 1.70 | D. | 1.75 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{3}{2}$) | B. | (0,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 4+4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com