7.已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),且當x∈[0,$\frac{3}{2}$)時,f(x)=一x3.則f($\frac{11}{2}$)=( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-$\frac{125}{8}$D.$\frac{125}{8}$

分析 根據(jù)函數(shù)奇偶性和條件求出函數(shù)是周期為3的周期函數(shù),利用函數(shù)周期性和奇偶性的關(guān)系進行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵奇函數(shù)f(x)滿足f(x+3)=f(x),
∴函數(shù)f(x)是周期為3的函數(shù),
∵當x∈[0,$\frac{3}{2}$)時,f(x)=-x3,
∴f($\frac{11}{2}$)=f($\frac{11}{2}$-6)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=$\frac{1}{8}$,
故選:B.

點評 本題主要考查函數(shù)值的計算,根據(jù)條件求出函數(shù)的周期性,利用函數(shù)的奇偶性和周期性進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若將函數(shù)y=sin2x的圖象向左平移$\frac{π}{6}$個單位,則平移后的圖象( 。
A.關(guān)于點$(-\frac{π}{12},0)$對稱B.關(guān)于直線$x=-\frac{π}{12}$對稱
C.關(guān)于點$(\frac{π}{12},0)$對稱D.關(guān)于直線$x=\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合$M=\{x|\frac{2x-1}{x+1}≤1\}$,N={x|-1<x<1},則( 。
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin($\frac{π}{3}$-2x)-$\sqrt{3}$sin($\frac{π}{6}$+2x),x∈R,則f(x)是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的奇函數(shù)D.最小正周期為2π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.命題“若a>b,則a+c>b+c”的逆命題是( 。
A.若a>b,則a+c≤b+cB.若a+c≤b+c,則a≤bC.若a+c>b+c,則a>bD.若a≤b,則a+c≤b+c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某省2016年高中數(shù)學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標準為:85分及以上,記為A等;分數(shù)在[70,85)內(nèi),記為B等;分數(shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時認定A,B,C為合格,D為不合格.已知甲,乙兩所學校學生的原始成績均分布在[50,100]內(nèi),為了比較兩校學生的成績,分別抽取50名學生的原始成績作為樣本進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為C,D的所有數(shù)據(jù)的莖葉圖如圖2所示.
(I)求圖中x的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;
(Ⅱ)在乙校的樣本中,從成績等級為C,D的學生中隨機抽取兩名學生進行調(diào)研,求抽出的兩名學生中至少有一名學生成績等級為D的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)集合$A=[(x,y)|\frac{x^2}{25}+\frac{y^2}{16}≤1],B=[(x,y)|\left\{\begin{array}{l}|x|≤m\\|y|≤n\end{array}\right.,0<m<5,0<n<4且(m,n)∈A]$,則集合∁AB對應(yīng)圖形面積取得最小值時,m+n的值為( 。
A.$\frac{{9\sqrt{2}}}{2}$B.$5\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知直角△ABC中,AB=3,AC=4,BC=5,I是△ABC的內(nèi)心,P是△IBC內(nèi)部(不含邊界)的動點,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),則λ+μ的取值范圍是( 。
A.($\frac{7}{12}$,1)B.($\frac{1}{3}$,1)C.($\frac{1}{4}$,$\frac{7}{12}$)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出的y的值為(  )
A.2B.-1C.-$\frac{13}{4}$D.-$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案