2.已知命題P:?x∈(-∞,0),2x<3x;命題q:?x∈(0,π),sinx≤1,則下列命題為真命題的是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

分析 先分析命題p,q的真假,進(jìn)而根據(jù)復(fù)合命題真假判斷的真值表,可得答案.

解答 解:∵當(dāng)x∈(-∞,0)時(shí),2x>3x恒成立,
故命題P:?x∈(-∞,0),2x<3x為假命題;
當(dāng)x∈(0,π)時(shí),0<sinx≤1,
故命題q為真命題,
故命題p∧q,p∨(¬q),p∧(¬q)均為假命題;
(¬p)∧q為真命題,
故選:D

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)F是其右焦點(diǎn),點(diǎn)A是其左頂點(diǎn),且|AF|=3.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(diǎn)F作不與x軸重合的直線交橢圓E于兩點(diǎn)B、C,直線AB、AC分別交直線l:x=4于點(diǎn)M、N.試問:在x軸上是否存在定點(diǎn)Q,使得$\overrightarrow{QM}•\overrightarrow{QN}=0$?若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)x,y滿足x2+y2-2y=0,且(k-1)x-y-3k+5≤0恒成立,則實(shí)數(shù)k的取值范圍為k≥$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.二項(xiàng)式${(\frac{1}{2}\sqrt{x}+\frac{2}{\root{3}{x}})}^{6}$的展開式中第四項(xiàng)的系數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,陰影部分是由四個(gè)全等的直角三角形組成的圖形,若直角三角形兩條直角邊的長分別為a,b,且a=2b,則在大正方形內(nèi)隨即擲一點(diǎn),這一點(diǎn)落在正方形內(nèi)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某程序框圖如圖所示,若運(yùn)行該程序后輸出S為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知m為實(shí)數(shù),i為虛數(shù)單位,若m+(m2-4)i>0,則$\frac{m+2i}{2-2i}$=( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}$圖象上一個(gè)動(dòng)點(diǎn)作函數(shù)的切線,則切線傾斜角的范圍為(  )
A.$[0,\frac{3π}{4}]$B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[\frac{3π}{4},π)$D.$(\frac{π}{2},\frac{3π}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+y2-4x+6y=0的圓心坐標(biāo)是(  )
A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

同步練習(xí)冊答案