5.通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下2×2列聯(lián)表:
男生女生合計(jì)
挑同桌304070
不挑同桌201030
總計(jì)5050100
(Ⅰ)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
(Ⅱ)根據(jù)以上2×2列聯(lián)表,是否有95%以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)根據(jù)分層抽樣原理求出樣本中挑同桌有3人,不挑同桌有2人,
利用列舉法求出基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值;
(Ⅱ)根據(jù)2×2列聯(lián)表計(jì)算觀測值,對(duì)照臨界值表得出結(jié)論.

解答 解:(Ⅰ)根據(jù)分層抽樣方法抽取容量為5的樣本,挑同桌有3人,記為A、B、C,
不挑同桌有2人,記為d、e;
從這5人中隨機(jī)選取3人,基本事件為
ABC,ABd,ABe,ACd,ACe,Ade,BCd,BCe,Bde,Cde共10種;
這3名學(xué)生中至少有2名要挑同桌的事件為概率為
ABC,ABd,ABe,ACd,ACe,BCd,BCe,共7種;
故所求的概率為P=$\frac{7}{10}$;
(Ⅱ)根據(jù)以上2×2列聯(lián)表,計(jì)算觀測值
K2=$\frac{100{×(30×10-20×40)}^{2}}{70×30×50×50}$≈4.7619>3.841,
對(duì)照臨界值表知,有95%以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān).

點(diǎn)評(píng) 本題考查了分層抽樣原理與列舉法求基本事件的概率和2×2列聯(lián)表計(jì)算觀測值的問題,是綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一只袋中裝有編號(hào)為1,2,3,…,n的n個(gè)小球,n≥4,這些小球除編號(hào)以外無任何區(qū)別,現(xiàn)從袋中不重復(fù)地隨機(jī)取出4個(gè)小球,記取得的4個(gè)小球的最大編號(hào)與最小編號(hào)的差的絕對(duì)值為ξn,如ξ4=3,ξ5=3或4,ξ6=3或4或5,記ξn的數(shù)學(xué)期望為f(n).
(1)求f(5),f(6);
(2)求f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.5件產(chǎn)品中混有2件次品,現(xiàn)用某種儀器依次檢驗(yàn),找出次品.
(I)求檢驗(yàn)3次完成檢驗(yàn)任務(wù)的概率;
(II)由于正品和次品對(duì)儀器的損傷程度不同,在一次檢驗(yàn)中,若是正品需費(fèi)用100元,次品則需200元,設(shè)X是完成檢驗(yàn)任務(wù)的費(fèi)用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q為真,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.焦點(diǎn)在坐標(biāo)軸,中心在原點(diǎn)的雙曲線的漸近線過點(diǎn)(3,-4),則雙曲線的離心率為$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲,乙,丙三地實(shí)施人工降雨,其實(shí)驗(yàn)統(tǒng)計(jì)結(jié)果如下
方式實(shí)施地點(diǎn)大雨中雨小雨模擬實(shí)驗(yàn)次數(shù)
A2次6次4次12次
B3次6次3次12次
C2次2次8次12次
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù):
(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時(shí),能緩解旱情,若甲、丙地需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記“甲,乙,丙三地中緩解旱情的個(gè)數(shù)”為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC中,AC=4,BC=2$\sqrt{7},∠BAC=\frac{π}{3}$,則AB的長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x^2}+1}$+x)-2017-x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為(  )
A.$(-∞,-\frac{1}{4})$B.$(-\frac{1}{4},+∞)$C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一光源P在桌面A的正上方,半徑為2的球與桌面相切,且PA與球相切,小球在光源P的中心投影下在桌面產(chǎn)生的投影為一橢圓,如圖所示,形成一個(gè)空間幾何體,且正視圖是Rt△PAB,其中PA=6,則該橢圓的短軸長為(  )
A.6B.8C.$4\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案