A. | [1,e] | B. | [1+$\frac{1}{e}$,e] | C. | (1,e] | D. | (1+$\frac{1}{e}$,e] |
分析 由對(duì)數(shù)函數(shù)的單調(diào)性求得f(x)的取值范圍,求導(dǎo),利用函數(shù)的單調(diào)性求得g(x)的值域,由題意可知:[a-1,a]⊆($\frac{1}{e}$,e],即可求得a的取值范圍.
解答 解:設(shè)f(x)=a-lnx,x∈[1,e]單調(diào)遞減,
∴f(x)max=a,f(x)min=a-1,
∴f(x)∈[a-1,a],
設(shè)g(x)=x2ex,
∵對(duì)任意的x1∈[1,e],總存在唯一的x2∈[-1,1],使得a-lnx1=x22ex2成立,
∴[a-1,a]是g(x)的不含極值點(diǎn)的單值區(qū)間的子集,
∵g′(x)=x(2+x)ex,∴x∈[-1,0)時(shí),g′(x)<0,g(x)=x2ex是減函數(shù),
當(dāng)x∈(0,1],g′(x)>0,g(x)=x2ex是增函數(shù),
∵g(-1)=$\frac{1}{e}$<e=g(1),
∴[a-1,a]⊆($\frac{1}{e}$,e],
∴$\left\{\begin{array}{l}{a-1>\frac{1}{e}}\\{a≤e}\end{array}\right.$,解得:$\frac{1}{e}$+1<a<e.
故選D.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用到求函數(shù)單調(diào)性及值域,考查集合之間的關(guān)系,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 135° | B. | 120° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 99 | C. | 198 | D. | 297 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com