在△ABC中,a=3,c=3
3
,A=30°,求C及b.
考點:解三角形
專題:解三角形
分析:根據(jù)正弦定理先求出角C,然后結(jié)合角C,利用三角形的邊角關(guān)系即可得到結(jié)論.
解答: 解:∵a=3,c=3
3
,A=30°,
∴由正弦定理得
a
sinA
=
c
sinC
,
即sinC=
csinA
A
=
3
3
×
1
2
3
=
3
2
,
則C=60°或120°,
則B=180°-30°-60°=90°或則B=180°-30°-120°=30°,
若B=90°,則b=
a2+c2
=
9+27
=
36
=6
,
若B=30°,則b=a=3.
點評:本題主要考查三角形正弦定理和余弦定理的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)準(zhǔn)備在開學(xué)時舉行一次大學(xué)一年級學(xué)生座談會,擬邀請20名來自本校機械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟學(xué)院的學(xué)生參加,各學(xué)院邀請的學(xué)生數(shù)如下表所示:
學(xué)院機械工程學(xué)院海洋學(xué)院醫(yī)學(xué)院經(jīng)濟學(xué)院
人數(shù)4646
(Ⅰ)從這20名學(xué)生中隨機選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機選出3名學(xué)生發(fā)言,設(shè)來自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任取實數(shù)a,b∈[-1,1],則a,b滿足b≥a2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-1,3),
b
=(1,t),若(
a
-2
b
)⊥
a
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x+
π
6
),x∈R.
(1)求f(
π
12
)的值;
(2)若sinθ=
4
5
,θ∈(0,
π
2
),求f(
12
-θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在漸近線方程為4x±3y=0的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上,其中F1,F(xiàn)2分別為其左、右焦點.若△PF1F2的面積為16且
PF1
PF2
=0,則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+2x-3的零點所在的大致區(qū)間是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,三角形的面積為
3
,又
cosC
cosB
=
c
2a-b
,則
1
b+1
+
9
a+9
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3,x≤0
log
1
3
x,x>0
,則方程f(x)=-1解的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案