【題目】某公園有一個(gè)直角三角形地塊,現(xiàn)計(jì)劃把它改造成一塊矩形和兩塊三角形區(qū)域.如圖,矩形區(qū)域用于娛樂(lè)城設(shè)施的建設(shè),三角形BCD區(qū)域用于種植甲種觀(guān)賞花卉,三角形CAE區(qū)域用于種植乙種觀(guān)賞花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲種花卉每平方千米造價(jià)1萬(wàn)元,乙種花卉每平方千米造價(jià)4萬(wàn)元,設(shè)OE=x千米.試建立種植花卉的總造價(jià)為y(單位:萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式;求x為何值時(shí),種植花卉的總造價(jià)最小,并求出總造價(jià).

【答案】解:由題意,CD=OE=x.由△BCD∽△BAO知BD= x,所以SBCD= x2
同理得SCAE= (x﹣4)2
所以,y= [x2+(x﹣4)2×4]= (5x2﹣32x+64),其中,0<x<4.
y= [5(x﹣ 2+ ]
因?yàn)?<<4,…14分
所以x= 時(shí),y有最小值為4.8萬(wàn)元.
答:x為 時(shí),種植花卉的總造價(jià)最小,總造價(jià)最小值為4.8萬(wàn)元
【解析】求出三角形BCD、三角形CAE區(qū)域的面積,可得函數(shù)解析式,利用配方法,可得函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,定義橢圓上的點(diǎn)的“伴隨點(diǎn)”為.

(1)求橢圓上的點(diǎn)的“伴隨點(diǎn)”的軌跡方程;

(2)如果橢圓上的點(diǎn)的“伴隨點(diǎn)”為,對(duì)于橢圓上的任意點(diǎn)及它的“伴隨點(diǎn)”,求的取值范圍;

(3)當(dāng), 時(shí),直線(xiàn)交橢圓, 兩點(diǎn),若點(diǎn), 的“伴隨點(diǎn)”分別是, ,且以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙ 與⊙ ,以, 分別為左右焦點(diǎn)的橢圓 經(jīng)過(guò)兩圓的交點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)、是橢圓上的兩點(diǎn),若直線(xiàn)的斜率之積為,試問(wèn)的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
R(A∪B);
已知C={x|a<x<a+1},且CA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:

若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱(chēng)為“讀書(shū)迷”.

(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書(shū)迷”有多少人?

(2)從已抽取的7名“讀書(shū)迷”中隨機(jī)抽取男、女“讀書(shū)迷”各1人,參加讀書(shū)日宣傳活動(dòng).

(i)共有多少種不同的抽取方法?

(ii)求抽取的男、女兩位“讀書(shū)迷”月均讀書(shū)時(shí)間相差不超過(guò)2小時(shí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是,曲線(xiàn) 的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線(xiàn) 經(jīng)過(guò)點(diǎn).

(1)寫(xiě)出直線(xiàn) 的參數(shù)方程和曲線(xiàn) 的直角坐標(biāo)方程;

(2)若直線(xiàn) 和曲線(xiàn)相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求證:過(guò)點(diǎn)有三條直線(xiàn)與曲線(xiàn)相切;

(Ⅱ)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,向量 ,函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,π]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案