分析 (1)由2x2-ax+1>0在x∈(1,3)上恒成立,分離參數a,利用導數判斷f(x)=$2x+\frac{1}{x}$在x∈(1,3)上的單調性,求得f(x)的取值范圍得答案;
(2)更換主元,看作關于a的一次函數,令g(a)=-xa+2x2+1,由2x2-ax+1>0在a∈(1,3)上恒成立,得到$\left\{\begin{array}{l}{g(1)=2{x}^{2}-x+1≥0}\\{g(3)=2{x}^{2}-3x+1≥0}\end{array}\right.$,求解不等式組得答案.
解答 解:(1)若2x2-ax+1>0在x∈(1,3)上恒成立,即ax<2x2+1在x∈(1,3)上恒成立,
也就是$a<2x+\frac{1}{x}$在x∈(1,3)上恒成立,
令f(x)=$2x+\frac{1}{x}$,則f′(x)=2$-\frac{1}{{x}^{2}}$=$\frac{2{x}^{2}-1}{{x}^{2}}$,
當x∈(1,3)時,f′(x)>0,∴f(x)在(1,3)上單調遞增,即f(x)>f(1)=3.
∴a≤3.
則實數a的取值集合為(-∞,3];
(2)若2x2-ax+1>0在a∈(1,3)上恒成立,即-xa+2x2+1>0在a∈(1,3)上恒成立,
令g(a)=-xa+2x2+1,
則$\left\{\begin{array}{l}{g(1)=2{x}^{2}-x+1≥0}\\{g(3)=2{x}^{2}-3x+1≥0}\end{array}\right.$,解得x$≤\frac{1}{2}$或x≥1.
∴實數x的取值范圍是(-∞,$\frac{1}{2}$]∪[1,+∞).
點評 本題考查函數恒成立問題,考查了分離變量法及更換主元法,訓練了利用導數判斷函數的單調性,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{12}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com