16.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,sin(α+β)=-$\frac{4}{5}$,則sinβ=$-\frac{7}{25}$.

分析 構(gòu)造思想,sinβ=sin[(α+β)-α],再利用和與差公式直接求解即可.

解答 解:α∈(0,$\frac{π}{2}$),sinα=$\frac{3}{5}$
可得:cosα=$\frac{4}{5}$
∵β∈($\frac{π}{2}$,π),
∴α+β∈($\frac{π}{2},\frac{3π}{2}$),
又sin(α+β)=-$\frac{4}{5}$<0,
∴cos(α+β)=-$\frac{3}{5}$
則sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$-\frac{7}{25}$.
故答案為$-\frac{7}{25}$

點(diǎn)評(píng) 本題考查了構(gòu)造思想,和與差公式的運(yùn)用和計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的$x∈[{0,\frac{π}{2}}]$,f(x)≥kx恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx,$x∈[{-\frac{2015π}{2},\frac{2017π}{2}}]$,過(guò)點(diǎn)$M({\frac{π-1}{2},0})$作函數(shù)F(x)的圖象的所有切線(xiàn),令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.學(xué)校從參加高三年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿(mǎn)分為100分),得到如下數(shù)學(xué)成績(jī)的頻率分布表:
分組頻數(shù)頻率
[40,50)2
[50,60)3
[60,70)0.28
[70,80)15
[80,90)12
[90,100]4
(Ⅰ)請(qǐng)?jiān)诖痤}卡上完成頻率分布表和作出頻率分布直方圖;
(Ⅱ)用樣本估計(jì)總體,若高三年級(jí)共有2000人,估計(jì)成績(jī)不及格(60分以下)的人數(shù);
(Ⅲ)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),現(xiàn)從成績(jī)[90,100]的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)赱40,50)中的某一位同學(xué),即成立幫扶學(xué)習(xí)小組,樣本中已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y≥0}\\{x+2y-4≥0}\end{array}\right.$,則z=x-2y的最大值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=$\int_0^2{\sqrt{4-{x^2}}}$dx,則a2014(a2012+2a2014+a2016)的值為( 。
A.π2B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=ax-$\frac{1}{x}$,g(x)=lnx,x>0,a∈R是常數(shù)
(Ⅰ)求曲線(xiàn)y=g(x)在點(diǎn)P(1,g(1)處的切線(xiàn)方程;
(Ⅱ)設(shè)F(x)=f(x)-g(x),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.?dāng)?shù)列{an}對(duì)于確定的正整數(shù)m,若存在正整數(shù)n使得am+n=am+an成立,則稱(chēng)數(shù)列{an}為“m階可分拆數(shù)列”.
(1)設(shè){an}是首項(xiàng)為2,公差為2的等差數(shù)列,證明{an}為“3階可分拆數(shù)列”;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為${S_n}={2^n}-a$(a>0),若數(shù)列{an}為“1階可分拆數(shù)列”,求實(shí)數(shù)a的值;
(3)設(shè)${a_n}={2^n}+{n^2}+12$,試探求是否存在m使得若數(shù)列{an}為“m階可分拆數(shù)列”.若存在,請(qǐng)求出所有m,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)i為虛數(shù)單位,若$z=\frac{a-i}{1+i}(a∈{R})$是純虛數(shù),則a的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個(gè)頂點(diǎn)的四邊形面積為2$\sqrt{6}$.
(1)求橢圓C的方程;
(2)A、B是橢圓的左右頂點(diǎn),P(xP,yP)是橢圓上任意一點(diǎn),橢圓在P點(diǎn)處的切線(xiàn)與過(guò)A、B且與x軸垂直的直線(xiàn)分別交于C、D兩點(diǎn),直線(xiàn)AD、BC交于Q(xQ,yQ),是否存在實(shí)數(shù)λ,使xP=λxQ恒成立,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案