6.用分析法證明:欲證①A>B,只需證②C<D,這里②是①的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

分析 利用充要條件的有關(guān)知識即可判斷出結(jié)論.

解答 解:用分析法證明:欲證①A>B,只需證②C<D,這里②是①充分條件.
故選:A.

點評 本題考查了分析法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某農(nóng)場所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了2017年2月1日至2月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表:
日期2月1日2月2日2月3日2月4日2月5日
溫差x(°C)101113128
發(fā)芽數(shù)x(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的兩組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是2月1日與2月5日的兩組數(shù)據(jù),請根據(jù)2月2日至2月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;可以預(yù)報當(dāng)溫差為20℃時,種子發(fā)芽數(shù).
附:回歸直線方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.先按照同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(6)的值;
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F(-c,0),過點F的直線交橢圓于A,B兩點,當(dāng)直線AB經(jīng)過橢圓的一個頂點時,其傾斜角恰為60°.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點,記△GFD的面積為S1,△OED(O為原點)的面積為S2,若c=1,求$\frac{{S}_{1}}{{S}_{2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個焦點為F,虛軸的一個端點為B,線段BF與雙曲線的一條漸近線交于點A,若$\overrightarrow{FA}=2\overrightarrow{AB}$,則雙曲線的離心率為( 。
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足$\frac{tanA}{tanB}=\frac{2c-b}$.
(1)求角A的大。
(2)若b=c=1,在邊AB,AC上分別取D,E兩點,將△ADE沿直線DE折,使頂點A正好落在邊BC上,求線段AD長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線的方程為y=2px2且過點(1,4),則拋物線的焦點坐標為( 。
A.(1,0)B.$(\frac{1}{16},0)$C.$(0,\frac{1}{16})$D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=x2+mx+n,其中1≤m≤3,0≤n≤4,記函數(shù)f(x)滿足條件$\left\{\begin{array}{l}f(2)≤12\\ f(-1)≤3\end{array}\right.$的事件為A,則事件A發(fā)生的概率為( 。
A.$\frac{5}{8}$B.$\frac{13}{16}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.自點 A(-3,4)作圓(x-2)2+(y-3)2=1的切線,則A到切點的距離為( 。
A.$\sqrt{5}$B.3C.$\sqrt{10}$D.5

查看答案和解析>>

同步練習(xí)冊答案