【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點(diǎn)M、E分別是PA、PD的中點(diǎn)
(1)求證:CE//平面BMD
(2)點(diǎn)Q為線段BP中點(diǎn),求直線PA與平面CEQ所成角的余弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1) 連接ME,通過(guò)對(duì)邊關(guān)系得到四邊形為平行四邊形,所以,進(jìn)而得到線面平行;(2)建立坐標(biāo)系,進(jìn)而得到直線PA的方向向量,和面的法向量,進(jìn)而得到線面角.
(1)連接ME,因?yàn)辄c(diǎn)分別是的中點(diǎn),所以,所以,所以四邊形為平行四邊形,所以.又因?yàn)?/span>平面,平面,所以平面.
(2)如圖,以為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,則
又,
設(shè)平面的法向量為,列方程組求得其中一個(gè)法向量為,設(shè)直線與平面所成角大小為,于是
,
進(jìn)而求得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過(guò)的兩條不同直線分別于橢圓交于點(diǎn)記的斜率分別為
(1)當(dāng)經(jīng)過(guò)橢圓右焦點(diǎn)且為中點(diǎn)時(shí),求:
①橢圓的標(biāo)準(zhǔn)方程;
②四邊形面積的取值范圍.
(2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,曲線由曲線:和曲線:組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).
(Ⅰ)若,求曲線的方程;
(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;
(Ⅲ)對(duì)于(Ⅰ)中的曲線,若直線過(guò)點(diǎn)交曲線于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:
消費(fèi)次數(shù) | 第1次 | 第2次 | 第3次 | 不少于4次 |
收費(fèi)比例 | 0.95 | 0.90 | 0.85 | 0.80 |
現(xiàn)隨機(jī)抽取了100位會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:
消費(fèi)次數(shù) | 1次 | 2次 | 3次 | 不少于4次 |
頻數(shù) | 60 | 25 | 10 | 5 |
假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問(wèn)題:
(1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率
(2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2(cos2θ+3sin2θ)=12,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線C交于M,N兩點(diǎn).
(1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;
(2)求曲線C的內(nèi)接矩形周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1+a2+…+an=an+1﹣2.
(1)若a1=2,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列1,a2,a4,b1,b2,…bn,…成等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高一高二各班體育節(jié)的表現(xiàn)情況,統(tǒng)計(jì)了高一高二各班的得分情況并繪成如圖所示的莖葉圖,則下列說(shuō)法正確的是( )
A.高一年級(jí)得分中位數(shù)小于高二年級(jí)得分中位數(shù)
B.高一年級(jí)得分方差大于高二年級(jí)得分方差
C.高一年級(jí)得分平均數(shù)等于高二年級(jí)得分平均數(shù)
D.高一年級(jí)班級(jí)得分最低為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線 的左、右焦點(diǎn)分別為,過(guò)作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com