4.已知P={x|x2+2x-3<0},Q={-2,-1,0,1,2},則P∩Q=( 。
A.{-1,0,1}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0}

分析 先分別求出集合P,Q,由此能求出P∩Q.

解答 解:∵P={x|x2+2x-3<0}={x|-3<x<1},
Q={-2,-1,0,1,2},
∴P∩Q={-2,-1,0}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸出的S的值為12,則輸入的a值可以為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.我們知道:“平面中到定點(diǎn)等于定長(zhǎng)的點(diǎn)軌跡是圓”拓展至空間:“空間中到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡是球”,類(lèi)似可得:已知A(-1,0,0),B(1,0,0),則點(diǎn)集{P(x,y,z)||PA|-|PB|=1}在空間中的軌跡描述正確的是( 。
A.以A,B為焦點(diǎn)的雙曲線繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
B.以A,B為焦點(diǎn)的橢球體
C.以A,B為焦點(diǎn)的雙曲線單支繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)曲面
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=5+5cost\\ y=4+5sint\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a、b、c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的個(gè)數(shù)是( 。
①對(duì)于一切x∈(-∞,1)都有f(x)>0;
②存在x>0使ax,bx,cx不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知f(x)=ex(x2+x+1),定義f1(x)=f'(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.經(jīng)計(jì)算:f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…照此規(guī)律,則fn(x)=fn(x)=ex[x2+(2n+1)x+n2+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號(hào)為1,2,3,4的紅球,2個(gè)編號(hào)為A、B的黑球,現(xiàn)從中任取2個(gè)小球.
(Ⅰ)求所取取2個(gè)小球都是紅球的概率;
(Ⅱ)求所取的2個(gè)小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.2016年10月21日,臺(tái)風(fēng)“海馬”導(dǎo)致江蘇、福建、廣東3省11市51個(gè)縣(市、區(qū))189.9萬(wàn)人受災(zāi),某調(diào)查小組調(diào)查了受災(zāi)某小區(qū)的100戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖.
(Ⅰ)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如表所示,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為捐款數(shù)額超過(guò)或不超過(guò)500元和自身經(jīng)濟(jì)損失是否超過(guò)4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣的方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過(guò)4000元的人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
經(jīng)濟(jì)損失不超過(guò)4000元經(jīng)濟(jì)損失超過(guò)4000元總計(jì)
捐款超過(guò)500元60
捐款不超過(guò)500元10
總計(jì)
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表
分?jǐn)?shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù)[0,30)[30,50)[50,60]
滿意度指數(shù)012
(Ⅰ)在抽樣的100人中,求對(duì)A餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)A餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)B餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案