【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)椤皟?yōu)秀”.

組別

分組

頻數(shù)

頻率

1

2

3

4

(Ⅰ)從這20人中成績(jī)?yōu)椤皟?yōu)秀”的員工中任取2人,求恰有1人的分?jǐn)?shù)為96的概率;

(Ⅱ)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

【答案】(Ⅰ);(Ⅱ)頻率分布表和頻率分布直方圖見解析,82.

【解析】

(Ⅰ)列舉出從四個(gè)人中抽取兩人的所有情況,找出滿足題意的情況,用古典概型的概率計(jì)算公式即可求得;

(Ⅱ)根據(jù)莖葉圖中數(shù)據(jù),先補(bǔ)全頻率分布表和頻率分布直方圖,再估算平均值即可.

(Ⅰ)設(shè)分?jǐn)?shù)分別為9596、9698的四人為、、

從成績(jī)?yōu)閮?yōu)秀的員工中任取2人,

包含6個(gè)基本事件

設(shè)從成績(jī)?yōu)閮?yōu)秀的員工中隨機(jī)抽取2人恰有一人的分?jǐn)?shù)為96為事件.

包含4個(gè)基本事件

(Ⅱ)

組別

分組

頻數(shù)

頻率

1

2

0.01

2

6

0.03

3

8

0.04

4

4

0.02

,

估計(jì)所有員工的平均分為82.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在世界讀書日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30.

1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

經(jīng)常閱讀

100

30

不經(jīng)常閱讀

合計(jì)

200

2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是拋物線的頂點(diǎn),,上的兩個(gè)動(dòng)點(diǎn),且.

1)判斷點(diǎn)是否在直線上?說明理由;

2)設(shè)點(diǎn)是△的外接圓的圓心,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體的底面為直角梯形,四邊形為矩形,且,,,,分別為,的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為右頂點(diǎn)為過右焦點(diǎn)且垂直于軸的直線與橢圓相交于兩點(diǎn),所得四邊形為菱形,且其面積為.

1)求橢圓的方程;

2)過左焦點(diǎn)的直線與橢圓交于兩點(diǎn),試求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且的極小值為.為函數(shù)的導(dǎo)函數(shù).

1)求的值;

2)若關(guān)于的方程有三個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案