【題目】如圖所示的多面體的底面為直角梯形,四邊形為矩形,且,,,,,,分別為,,的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
【答案】(1)答案見解析.(2)
【解析】
(1)先證明平面,可得,取中點(diǎn),利用等腰三角形的性質(zhì)可得,由線面垂直的判定即可得證;
(2)建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo)后,再求出平面的一個(gè)法向量和直線的方向向量,求出兩向量夾角的余弦值后利用平方關(guān)系即可得解.
(1)證明:,分別為,的中點(diǎn),,
四邊形為矩形,,
又,,,平面,
平面,平面,,
取中點(diǎn),連接,,,則,
點(diǎn),,,同在平面內(nèi).
在中,,,為中點(diǎn),
,
又,,平面,平面.
(2)由(1)知,,三條直線兩兩垂直且交于點(diǎn),以為原點(diǎn),,,分別為,,軸,建立空間直角坐標(biāo)系,如圖.
則,,,,
,分別為,中點(diǎn),可得,,
,,,
設(shè)平面的一個(gè)法向量為,則,即,
令,可得,,,
所以.
所以與平面所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電影《厲害了,我的國》于2018年3月正式登陸全國院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個(gè)人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標(biāo)識(shí)為的四張電影票放在編號(hào)分別為1,2,3,4的四個(gè)不同的盒子里,讓四位好朋友進(jìn)行猜測:
甲說:第1個(gè)盒子里放的是,第3個(gè)盒子里放的是
乙說:第2個(gè)盒子里放的是,第3個(gè)盒子里放的是
丙說:第4個(gè)盒子里放的是,第2個(gè)盒子里放的是
丁說:第4個(gè)盒子里放的是,第3個(gè)盒子里放的是
小明說:“四位朋友你們都只說對了一半”
可以預(yù)測,第4個(gè)盒子里放的電影票為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于)收費(fèi)元,續(xù)重元(不足按算). (如:一個(gè)包裹重量為則需支付首付元,續(xù)重元,一共元快遞費(fèi)用)
(1)若你有三件禮物重量分別為,要將三個(gè)禮物分成兩個(gè)包裹寄出(如:合為一個(gè)包裹,一個(gè)包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)為了解該快遞點(diǎn)2019年的攬件情況,在2019年內(nèi)隨機(jī)抽查了天的日攬收包裹數(shù)(單位:件),得到如下表格:
包裹數(shù)(單位:件) | ||||
天數(shù)(天) |
現(xiàn)用這天的日攬收包裹數(shù)估計(jì)該快遞點(diǎn)2019年的日攬收包裏數(shù).若從2019年任取天,記這天中日攬收包裹數(shù)超過件的天數(shù)為隨機(jī)變量求的分布列和期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線、直線分別交于、兩點(diǎn)(異于極點(diǎn)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.
組別 | 分組 | 頻數(shù) | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
(Ⅰ)從這20人中成績?yōu)椤皟?yōu)秀”的員工中任取2人,求恰有1人的分?jǐn)?shù)為96的概率;
(Ⅱ)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在的平面與正三角形所在的平面互相垂直,為的中點(diǎn),連接.
(1)證明:平面平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了個(gè)城市,分別收集和分析了網(wǎng)約車的兩項(xiàng)指標(biāo)數(shù),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo)數(shù) | |||||
指標(biāo)數(shù) |
經(jīng)計(jì)算得:
(1)試求與間的相關(guān)系數(shù),并利用說明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為時(shí),指標(biāo)數(shù)的估計(jì)值.
附:相關(guān)公式:,
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點(diǎn),與相交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)的直線、與拋物線相切,切點(diǎn)分別是、.
(1)證明:直線過定點(diǎn);
(2)以為直徑的圓過點(diǎn),求點(diǎn)的坐標(biāo)及圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com