3.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,x>a}\\{{x^2}+5x+2,x≤a}\end{array}}$,若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1)B.[-1,2)C.[-2,2)D.[0,2]

分析 利用函數(shù)的零點(diǎn),轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù),利用數(shù)形結(jié)合轉(zhuǎn)化求解即可.

解答 解:函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,x>a}\\{{x^2}+5x+2,x≤a}\end{array}}$,
x2+5x+2=2x,可得x2+3x+2=0,
解得x=-1,x=-2.y=x+2與y=2x的交點(diǎn)為:
x=2,y=4,
函數(shù)y=f(x)與y=2x的圖象如圖:
函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是:-1≤a<2.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)的零點(diǎn)個(gè)數(shù)的判斷,考查數(shù)形結(jié)合以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知m,n是兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中假命題的是( 。
A.若m⊥α,m⊥β則α∥βB.若m∥n,m⊥α,則n⊥α
C.若m∥α,α∩β=n,則m∥nD.若m⊥α,m?β則 α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{3π}{2}$+1+$\frac{\sqrt{3}}{2}$B.3π+$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$C.$\frac{3π+1+\sqrt{3}}{2}$D.3π+1+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,四邊形ACFE為矩形,CF=$\sqrt{3}$,平面ACFE⊥平面ABCD,點(diǎn)M為線段EF中點(diǎn).
(Ⅰ)求異面直線ED與MC所成的角的正切值;
(Ⅱ)求證:平面AMB⊥平面MBC;
(Ⅲ)求直線BC與平面AMB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,已知tan($\frac{π}{4}$+A)=2.
(Ⅰ)求cos(2A+$\frac{π}{3}$)的值;
(Ⅱ)若B=$\frac{π}{4}$,a=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若3a2+3b2-4c2=0,則直線ax+by+c=0被圓x2+y2=1所截得的弦長(zhǎng)為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.甲、乙兩名籃球運(yùn)動(dòng)員在10場(chǎng)比賽中得分的莖葉圖如圖所示,則“x=9”是“甲運(yùn)動(dòng)員得分平均數(shù)大于乙運(yùn)動(dòng)員得分平均數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積與其外接球體積之比為$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓經(jīng)過(guò)點(diǎn)(4,0),離心率為$\frac{{\sqrt{3}}}{2}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案