20.拋物線C:y2=2px(p>0)的焦點(diǎn)為F,E是C的準(zhǔn)線上位于x軸上方的一點(diǎn),直線EF與C在第一象限交于點(diǎn)M,在第四象限交于點(diǎn)N,且|EM|=2|MF|=2,則點(diǎn)N到y(tǒng)軸的距離為$\frac{9}{4}$.

分析 由題意可知丨FM丨=1,|EM|=2,丨EF丨=3,根據(jù)相似三角形的性質(zhì),即可求得p的值,由丨EN丨=2丨DN丨,根據(jù)拋物線的定義,即可求得丨DN丨=3,點(diǎn)N到y(tǒng)軸的距離為丨DN丨-$\frac{p}{2}$.

解答 解:過M,N做MH⊥l,ND⊥l,垂足分別為H,D,
由拋物線的定義可得丨FM丨=丨MH丨,丨FN丨=丨DN丨
|EM|=2|MF|=2,則丨FM丨=1,|EM|=2,丨EF丨=3,
∴∠EMH=$\frac{π}{3}$,∠MEH=$\frac{π}{6}$,
∴p=$\frac{3}{2}$,拋物線的標(biāo)準(zhǔn)方程為y2=3x,
在Rt△EDN中,sin∠MED=$\frac{丨DN丨}{丨EN丨}$,
則丨EN丨=2丨DN丨,即丨EM丨+丨MF丨+丨DN丨=2丨DN丨,
則丨DN丨=3,
點(diǎn)N到y(tǒng)軸的距離為丨DN丨-$\frac{p}{2}$=3-$\frac{3}{4}$=$\frac{9}{4}$,
故答案為:$\frac{9}{4}$.

點(diǎn)評 本題考查拋物線的簡單幾何性質(zhì),拋物線的定義,考查三角形的相似,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{\frac{m}{x},x<0}\end{array}}$,若f(x)-f(-x)=0有四個不同的根,則m的取值范圍是(  )
A.(0,2e)B.(0,e)C.(0,1)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex[x2+(a+1)x+2a-1].
(1)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.已知命題p,q,若p∨(¬q)為真命題,則q一定是假命題
B.命題“?x∈R,2x>0”的否定是“$?{x_0}∈R,{2^{x_0}}<0$”
C.“$x=\frac{π}{4}$”是“tan x=l”的充分不必要條件
D.“若x1>1,x2>1,則x1+x2>2”的否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{xlnx}{x-1}+ax-1$在x=2處的切線平行于直線y=(1-ln2)x.
(I)求a的值,并判斷f(x)在(1,+∞)上的單調(diào)性.
(II)求證:$f(x)>\frac{x-1}{{{x^2}+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5. 如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,AB=DP=2$\sqrt{2}$,E為CD的中點(diǎn),點(diǎn)F在線段PB上.
(Ⅰ)求證:AD⊥PC;      
(Ⅱ)當(dāng)三棱錐B-EFC的體積等于四棱錐P-ABCD體積的$\frac{1}{6}$時,求$\frac{PF}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,在正方體ABCD-A1B1C1D1中,點(diǎn)G在棱AA1上,AG=$\frac{1}{3}$AA1,E,F(xiàn)分別是棱
C1D1,B1C1的中點(diǎn),過E,F(xiàn),G三點(diǎn)的截面α將正方體分成兩部分,則正方體的四個側(cè)面被截面α截得的上、下兩部分面積之比為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱柱ABCD-A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC=$\frac{π}{2}$.
(1)求證:B1C1∥平面BCD1;
(2)求證:平面A1ABB1⊥平面BCD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,則滿足f(f(m))>f(m)+1的m的取值范圍是( 。
A.$({-\frac{1}{2},+∞})$B.)(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

同步練習(xí)冊答案