【題目】已知函數(shù)(,為常數(shù))在內(nèi)有兩極值點(diǎn)
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:.
【答案】(1)(2)證明見(jiàn)解析
【解析】
(1)函數(shù)有兩個(gè)極值點(diǎn),轉(zhuǎn)化為在內(nèi)有兩個(gè)不相等的實(shí)數(shù)解,利用函數(shù)的單調(diào)性和零點(diǎn)存在性定理即可得實(shí)數(shù)a的取值范圍;
(2)構(gòu)造新函數(shù),利用單調(diào)性即可證明.
(1)由,可得,
記,有題意,知在上存在兩個(gè)零點(diǎn).
∵,
當(dāng)時(shí),,則在上遞增,至少有一個(gè)零點(diǎn),不合題意;
當(dāng)時(shí),由,得,
(i)若且,即時(shí),在上遞減,遞增;
則,且,
從而在和上各有一個(gè)零點(diǎn).
所以在上存在兩個(gè)零點(diǎn).
(ii)若,即時(shí),在上遞減,至多一個(gè)零點(diǎn),舍去.
(iii)若且,即時(shí),此時(shí)在上有一個(gè)零點(diǎn),而在上沒(méi)有零點(diǎn),舍去.
綜上可得,.
(2)令則
,
,
,
所以,在上遞增,從而,
即,
∴而,且在遞增;
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點(diǎn).
(1)求證AFPC
(2)BD//平面PEC
(3)求二面角D-PC-E的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在處的切線(xiàn)方程:
(2)當(dāng)>0時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名草《周髀算經(jīng)》曾記載有“勾股各自乘,并而開(kāi)方除之”,用符號(hào)表示為,我們把a,b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;5,12,13;7,24,25;9,40,41,以此類(lèi)推,可猜測(cè)第5組股數(shù)的三個(gè)數(shù)依次是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有兩個(gè)極值點(diǎn),,且不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】至2018年底,我國(guó)發(fā)明專(zhuān)利申請(qǐng)量已經(jīng)連續(xù)8年位居世界首位,下表是我國(guó)2012年至2018年發(fā)明專(zhuān)利申請(qǐng)量以及相關(guān)數(shù)據(jù).
總計(jì) | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請(qǐng)量(萬(wàn)件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問(wèn)這幾年中那一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線(xiàn)方程(精確到0.01),并預(yù)測(cè)我國(guó)發(fā)明專(zhuān)利申請(qǐng)量突破200萬(wàn)件的年份.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)與曲線(xiàn)兩交點(diǎn)所在直線(xiàn)的極坐標(biāo)方程;
(2)若直線(xiàn)的極坐標(biāo)方程為,直線(xiàn)與軸的交點(diǎn)為,與曲線(xiàn)相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知曲線(xiàn):和曲線(xiàn):,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線(xiàn)和曲線(xiàn)的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作線(xiàn)段的垂線(xiàn)交曲線(xiàn)于點(diǎn),求線(xiàn)段長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x-(a>0),g(x)=2lnx+bx且直線(xiàn)y=2x-2與曲線(xiàn)y=g(x)相切.
(1)若對(duì)[1,+)內(nèi)的一切實(shí)數(shù)x,小等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=l時(shí),求最大的正整數(shù)k,使得對(duì)[e,3](e=2.71828是自然對(duì)數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,,xk都有成立;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com