【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,直線與軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.
【答案】(1);(2)
【解析】
(1)先將和化為普通方程,可知是兩個(gè)圓,由圓心的距離判斷出兩者相交,進(jìn)而得相交直線的普通方程,再化成極坐標(biāo)方程即可;(2)先求出l的普通方程有,點(diǎn),寫(xiě)出直線l的參數(shù)方程,代入曲線:,設(shè)交點(diǎn)兩點(diǎn)的參數(shù)為,,根據(jù)韋達(dá)定理可得和,進(jìn)而求得的值。
(1) 曲線的普通方程為:
曲線的普通方程為:,即
由兩圓心的距離,所以?xún)蓤A相交,
所以?xún)煞匠滔鄿p可得交線為,即.
所以直線的極坐標(biāo)方程為.
(2) 直線的直角坐標(biāo)方程:,則與軸的交點(diǎn)為
直線的參數(shù)方程為,帶入曲線得.
設(shè)兩點(diǎn)的參數(shù)為,
所以,,所以,同號(hào).
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)(的值精確到0.01);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).
(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;
(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類(lèi)專(zhuān)業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類(lèi)專(zhuān)業(yè)”有關(guān)?
閱讀時(shí)間不足8.5小時(shí) | 閱讀時(shí)間超過(guò)8.5小時(shí) | |
理工類(lèi)專(zhuān)業(yè) | 40 | 60 |
非理工類(lèi)專(zhuān)業(yè) |
附:().
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<> | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“霧霾治理”“延遲退休”“里約奧運(yùn)”“量子衛(wèi)星”“神舟十一號(hào)”成為現(xiàn)在社會(huì)關(guān)注的個(gè)熱點(diǎn).小王想利用暑假時(shí)間調(diào)查一下社會(huì)公眾對(duì)這些熱點(diǎn)的關(guān)注度.若小王準(zhǔn)備按照順序分別調(diào)査其中的個(gè)熱點(diǎn),則“量子衛(wèi)星”作為其中的一個(gè)調(diào)查熱點(diǎn),但不作為第一個(gè)調(diào)查熱點(diǎn)的種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),我國(guó)農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的下降到2018年底的,創(chuàng)造了人類(lèi)減貧史上的中國(guó)奇跡,為全球減貧事業(yè)貢獻(xiàn)了中國(guó)智慧和中國(guó)方案.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例.2012年至2018年我國(guó)貧困發(fā)生率的數(shù)據(jù)如表:
年份() | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的7個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預(yù)測(cè)2019年的貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為.
(1)求圓的普通方程及直線的直角坐標(biāo)方程;
(2)設(shè)直線與圓相交于、兩點(diǎn),與軸交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車(chē)在饒城的大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車(chē)。為了研究廣大市民在共享單車(chē)上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周使用次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計(jì) | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果認(rèn)為每周使用超過(guò)3次的用戶為“喜歡騎行共享單車(chē)”,請(qǐng)完成列表(見(jiàn)答題卡),并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車(chē)”與性別有關(guān)?
(2)每周騎行共享單車(chē)6次及6次以上的用戶稱(chēng)為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶.
① 求抽取的4名用戶中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;
②為了鼓勵(lì)女性用戶使用共享單車(chē),對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com