13.已知數(shù)列{an}滿足:Sn+1•Sn=an+1,又${a_1}=\frac{2}{9}$,
(1)求證:數(shù)列$\{\frac{1}{S_n}\}$為等差數(shù)列;
(2)求an

分析 (1)由題意,得Sn+1?Sn=Sn+1-Sn,兩邊同時(shí)除以 Sn+1?Sn 得$1=\frac{1}{{S}_{n}}-\frac{1}{{S}_{n+1}}$,即可證明結(jié)論;
(2)寫出Sn,即可求an

解答 (1)證明:由Sn+1?Sn=an+1 及an+1=Sn+1-Sn,得Sn+1?Sn=Sn+1-Sn(n∈N+),
若存在 Sn=0,則 an=Sn?Sn-1=0,從而 Sn-1=Sn-an=0.
以此類推知 S1=0,矛盾,故Sn≠0(n∈N+).
從而兩邊同時(shí)除以 Sn+1?Sn 得$1=\frac{1}{{S}_{n}}-\frac{1}{{S}_{n+1}}$,即$\frac{1}{{S}_{n+1}}-\frac{1}{{S}_{n}}=-1(n∈{N}_{+})$,
所以 $\left\{\frac{1}{{S}_{n}}\right\}$ 是首項(xiàng)為 $\frac{9}{2}$,公差為-1 的等差數(shù)列.
(2)解:由(1)知,$\frac{1}{{S}_{n}}=\frac{9}{2}-(n-1)=\frac{11}{2}-n$,
故${S}_{n}=\frac{2}{11-2n}(n∈{N}_{+})$.
從而n≥2,an=Sn-Sn-1=$\frac{4}{(11-2n)(13-2n)}$,
n=1,a1=$\frac{2}{9}$,
所以${a}_{n}=\left\{\begin{array}{l}\frac{2}{9},&n=1\\ \frac{4}{(11-2n)(13-2n)},&n≥2.\end{array}\right.$.

點(diǎn)評(píng) 本題考查等差數(shù)列的證明,考查數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.棱錐P-ABC的四個(gè)頂點(diǎn)均在同一個(gè)球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=6,則該球的表面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F作傾斜角120°的直線l交橢圓為A,B,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α∈(0,π),若sinα+cosα=$\frac{\sqrt{3}}{3}$,則cos2α-sin2α=(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2}\\{|x|-y+1≤0}\end{array}\right.$,則z=$\frac{y+2}{x-2}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$+xcosx)dx=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x2+y2-4x-2y-4=0,則$\frac{2x+3y+1}{x+2}$的最小值是( 。
A.-2B.$-\frac{17}{4}$C.$-\frac{29}{5}$D.$2-\frac{{9\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在高速公路建設(shè)中需要確定隧道的長(zhǎng)度,工程技術(shù)人員已測(cè)得隧道兩端的兩點(diǎn)A、B到點(diǎn)C的距離AC=BC=1km,且∠ACB=120°,則A、B兩點(diǎn)間的距離為( 。
A.$\sqrt{3}$kmB.$\sqrt{2}$kmC.1.5kmD.2km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=1+sin2x,則等于$\lim_{△x→0}\frac{{f({△x})-f(0)}}{△x}$( 。
A.-2B.0C.3D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案