18.如圖所示,為測量一水塔AB的高度,在C處測得塔頂?shù)难鼋菫?0°,后退20米到達D處測得塔頂?shù)难鼋菫?0°,則水塔的高度為$10\sqrt{3}$米.

分析 利用AB表示出BC,BD.讓BD減去BC等于20即可求得AB長.

解答 解:設(shè)AB=hm,則BC=$\frac{\sqrt{3}}{3}$h,BD=$\sqrt{3}$h,
則$\sqrt{3}$h-$\frac{\sqrt{3}}{3}$h=20,
∴h=$10\sqrt{3}$m,
故答案為$10\sqrt{3}$.

點評 本題主要考查了三角函數(shù)的定義,根據(jù)三角函數(shù)可以把問題轉(zhuǎn)化為方程問題來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.學(xué)校從參加高一年級期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為150分),數(shù)學(xué)成績分組及各組頻數(shù)如下:[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)估計成績的眾數(shù)與中位數(shù);
(2)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在[135,150]的學(xué)生中選兩位同學(xué),共同幫助成績在[60,75)中的任意一位同學(xué),已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一箱內(nèi)有十張標(biāo)有0到9的卡片,從中任選一張,則取到卡片上的數(shù)字不小于6的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某機械零件加工由兩道工序組成,第一道工序的廢品率為a,第二道工序的廢品率為b,假定這兩道工序處廢品是彼此無關(guān)的,那么產(chǎn)品的合格率是(1-a)(1-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=8$,$\overrightarrow a•\overrightarrow b=-12$,則$\overrightarrow a與\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A、B、C的對邊分別為a、b、c,滿足b2+c2=a2+bc.
(1)求角A的大。
(2)求$y=\sqrt{3}sinB+cosB$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x2+8x,g(x)=6ln x+m.
(1)若函數(shù)y=g(x)的圖象與直線y=6x相切,求實數(shù)m的值;
(2)若函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點,求出實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓A:x2+y2=1在伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$的作用下變成曲線C,則曲線C的方程為(  )
A.2x2+3y2=1B.4x2+9y2=1C.$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,為測量山高l,選擇A和另一座山的山頂|PA|為測量觀測點.從△ABC點測得MB=MC點的仰角∠MAN=75°,從A點測得C點的仰角∠CAB=30°以及∠MAC=75°,從C點測得∠MCA=60°.已知山高BC=80m,則山高MN=$120+40\sqrt{3}$(m).

查看答案和解析>>

同步練習(xí)冊答案