1.“∵四邊形ABCD是矩形,∴四邊形ABCD的對(duì)角線相等,”以上推理的大前提是( 。
A.四邊形的對(duì)角線相等B.矩形的對(duì)角線相等
C.矩形是四邊形D.對(duì)角線相等的四邊形是矩形

分析 根據(jù)題意,用三段論的形式分析“∵四邊形ABCD是矩形,∴四邊形ABCD的對(duì)角線相等”,即可得答案.

解答 解:根據(jù)題意,用演繹推理即三段論形式推導(dǎo)一個(gè)結(jié)論成立,大前提應(yīng)該是結(jié)論成立的依據(jù),
∵由四邊形ABCD為矩形,得到四邊形ABCD的對(duì)角線相等的結(jié)論,
∴大前提一定是矩形的對(duì)角線相等,
故選:B.

點(diǎn)評(píng) 本題考查演繹推理的定義,關(guān)鍵是掌握演繹推理的形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{BA}=(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$\overrightarrow{BC}=(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,則∠ABC=( 。
A.120°B.45°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點(diǎn),則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.觀察下列等式
(1)sin$\frac{2π}{3}$$+sin\frac{4π}{3}$=0
(2)sin$\frac{2π}{5}$$+sin\frac{4π}{5}$$+sin\frac{6π}{5}$$+sin\frac{8π}{5}$=0
(3)sin$\frac{2π}{7}$$+sin\frac{4π}{7}$$+sin\frac{6π}{7}$$+sin\frac{8π}{7}$$+sin\frac{10π}{7}$$+sin\frac{12π}{7}$=0

由以上規(guī)律推測(cè),第n個(gè)等式為sin$\frac{2π}{2n+1}$+sin$\frac{4π}{2n+1}$+…+sin$\frac{2kπ}{2n+1}$+…+si n$\frac{4nπ}{2n+1}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的外接球的表面積為(
A.17πB.22πC.68πD.88π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,a2+c2=b2+2$\sqrt{2}$ac.
(1)求∠B 的大;
(2)求$\sqrt{2}$cosA+cosC 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)復(fù)數(shù)z滿足(1-i)z=3+i,則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在某次綜合素質(zhì)測(cè)試中,共設(shè)有60個(gè)考場(chǎng),每個(gè)考場(chǎng)30名考生.在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考場(chǎng)中座位號(hào)為06的考生,統(tǒng)計(jì)了他們的成績(jī),得到如圖所示的頻率分布直方圖.問(wèn):
(1)在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?
(2)估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);
(3)寫(xiě)出這60名考生成績(jī)的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a7+a13=24,則S13=( 。
A.52B.78C.104D.208

查看答案和解析>>

同步練習(xí)冊(cè)答案