3.已知全集U=Z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},則(∁UA)∩B等于( 。
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

分析 利用集合的基本運(yùn)算即可得到結(jié)論.

解答 解:A={x|x2-x-2<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},B={-1,0,1,2},
則(∁UA)∩B={-1,2},
故選:A.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)i為虛數(shù)單位,則$\frac{2+i}{1-i}$-(1-i)=$-\frac{1}{2}+\frac{5}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=( 。
A.-1+2iB.1-2iC.-1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若互不相等的實(shí)數(shù)a、b、c成等差數(shù)列,且c,a,b成等比數(shù)列,a+3b+c=10,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=$\frac{{\sqrt{2}}}{2}$AB.
(1)證明:BC1∥平面A1CD;
(2)求異面直線BC1和A1D所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.側(cè)棱與底面垂直的三棱柱ABC-A1B1C1的所有棱長均為2,則三棱錐B-AB1C的體積為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ x+2y-4≤0\\ x-3≤0\end{array}\right.$,則3x-2y的最大值為( 。
A.-4B.8C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,2Sn=an+1,則an+1=(  )
A.2n-1B.2n-1C.2×3n-1D.$\frac{1}{2}({{3^n}-1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知角θ在第二象限,且$|{sin\frac{θ}{2}}|=-sin\frac{θ}{2}$,則 $\frac{θ}{2}$在( 。
A.第一象限或第三象限B.第二象限或第四象限
C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案