16.若隨機(jī)變量X~N(u,σ2)(σ>0),則有如下結(jié)論( 。
P(u-σ<X≤u+σ)=0.6826,
P(u-2σ<X≤u+2σ)=0.9544
P(u-3σ<X≤u+3σ)=0.9974,
一班有60名同學(xué),一次數(shù)學(xué)考試的成績服從正態(tài)分布,平均分110,方差為100,理論上說在120分到130分之間的人數(shù)約為( 。
A.6B.7C.8D.9

分析 正態(tài)總體的取值關(guān)于x=110對(duì)稱,利用P(100<x<120)=0.6826,P(90<x<130)=0.9544,得即可到要求的結(jié)果.

解答 解:∵數(shù)學(xué)成績近似地服從正態(tài)分布N(110,102),
∴P(100<x<120)=0.6826,P(90<x<130)=0.9544,
根據(jù)正態(tài)曲線的對(duì)稱性知:
位于120分到130分的概率為$\frac{1}{2}(0.9544-0.6826)$=0.1359
∴理論上說在120分到130分的人數(shù)0.1359×60≈8.
故選:C.

點(diǎn)評(píng) 一個(gè)隨機(jī)變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似的服從正態(tài)分布,正態(tài)分布在概率和統(tǒng)計(jì)中具有重要地位且滿足3σ原則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求經(jīng)過點(diǎn)A(3,-2)且與圓x2+y2-2x+6y+5=0切于點(diǎn)B(0,1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知α是第二象限角,$tanα=-\frac{5}{12}$,則sin2α=-$\frac{120}{169}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$α,β∈({0,\frac{π}{2}})$,且$\frac{sinβ}{sinα}=cos({α+β})$,
(1)若 $α=\frac{π}{6}$,則tanβ=$\frac{\sqrt{3}}{5}$;
(2)tanβ的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,A={x|x2-3x-4>0},B={x|-2≤x≤2},則如圖所示的陰影部分所表示的集合為( 。
A.{x|-2≤x<4}B.{x|x≤2或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(a為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$\frac{{\sqrt{2}}}{2}ρcos(θ+\frac{π}{4})=-1$.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)過點(diǎn)M(-1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={0,1,2,3,4},集合M={1,2,3},N={0,3,4},則(∁UM)∩N( 。
A.{0,4}B.{3,4}C.{1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右頂點(diǎn)分別為A、B,F(xiàn)為橢圓C的右焦點(diǎn),圓x2+y2=4上有一動(dòng)點(diǎn)P,P不同于A,B兩點(diǎn),直線PA與橢圓C交于點(diǎn)Q,則$\frac{{k}_{PB}}{{k}_{QF}}$的取值范圍是(-∞,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若sinθ+coθ=$\frac{2}{3}$,則sinθ-cosθ=( 。
A.$\frac{\sqrt{14}}{3}$B.-$\frac{\sqrt{6}}{3}$C.±$\frac{\sqrt{14}}{3}$D.±$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案