【題目】已知函數(shù).
(1)試討論的單調(diào)性;
(2)當函數(shù)有三個不同的零點時,的取值范圍恰好是,求的值.
【答案】(1)見解析;(2).
【解析】
(1)求得,然后對與的大小關系進行分類討論,分析導數(shù)的符號變化,可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;
(2)由題意可知,可得出函數(shù)的兩個極值分別為、,由題意得出,由此得出,令,由題意得,進而可得出實數(shù)的值.
(1),.
當時,,此時,函數(shù)在上單調(diào)遞增;
當時,令,得,令,得或.
此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;
當時,令,得,令,得或.
此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.
綜上所述,當時,函數(shù)的單調(diào)遞增區(qū)間為;
當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;
當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;
(2)當時,函數(shù)在上單調(diào)遞增,至多一個零點,不合乎題意,
所以,,則函數(shù)有兩個極值,.
若函數(shù)有三個不同的零點,則,即,
由于的取值范圍恰好是,
令,則該函數(shù)的三個零點分別為、、.
由,得或;
由,得或;
由,得或.
因此,.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點在圓內(nèi),在過點P所作的圓的所有弦中,弦長最小值為.
(1)求實數(shù)a的值;
(2)若點M為圓外的動點,過點M向圓C所作的兩條切線始終互相垂直,求點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有( )種.
A.408B.120C.156D.240
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究一種新藥的療效,選名患者隨機分成兩組,每組各名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標和的數(shù)據(jù),并制成如圖,其中“”表示服藥者,“”表示未服藥者.
下列說法中,錯誤的是( )
A.服藥組的指標的均值和方差比未服藥組的都低
B.未服藥組的指標的均值和方差比服藥組的都高
C.以統(tǒng)計的頻率作為概率,患者服藥一段時間后指標低于的概率約為
D.這種疾病的患者的生理指標基本都大于
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)曲線與曲線有兩個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:①使得成立;②,都有成立,是在區(qū)間D上單調(diào)遞增的充要條件;③只要函數(shù)有零點,我們就可以用二分法求出零點的近似值;④過點作直線,使它與拋物線僅有一個公共點,這樣的直線有2條;正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:(),點是的左頂點,點為上一點,離心率.
(1)求橢圓的方程;
(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經(jīng)過點,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com