7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1 (a>b>0)的短軸長(zhǎng)為2,過上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2-4x-2y+4=0相切.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請(qǐng)說明理由.

分析 (I)由已知可得:b=1,結(jié)合直線與圓M:x2+y2-4x-2y+4=0相切.進(jìn)而可得c2=3,a2=4,即得橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)在x軸上是否存在一點(diǎn)T(4,0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB,聯(lián)立直線與橢圓方程,結(jié)合∠OTA=∠OTB 時(shí),直線TA,TB的斜率k1,k2和為0,可證得結(jié)論.

解答 解:(I)由已知中橢圓C的短軸長(zhǎng)為2,可得:b=1,
則過上頂點(diǎn)E(0,1)和右焦點(diǎn)F(0,c)的直線方程為:$\frac{x}{c}+y=1$,
即x+cy-c=0,
由直線與圓M:x2+y2-4x-2y+4=0相切.
故圓心M(2,1)到直線的距離d等于半徑1,
即$\frac{|2+c-c|}{\sqrt{1+{c}^{2}}}=1$,
解得:c2=3,
則a2=4,
故橢圓C的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),
當(dāng)直線AB的斜率不為0時(shí),設(shè)直線 方程為:x=my+1,代入$\frac{{x}^{2}}{4}+{y}^{2}=1$得:(m2+4)y2+2my-3=0,
則y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1•y2=$\frac{-3}{{m}^{2}+4}$,
設(shè)直線TA,TB的斜率分別為k1,k2,
若∠OTA=∠OTB,
則k1+k2=$\frac{{y}_{1}}{{x}_{1}-t}$+$\frac{{y}_{2}}{{x}_{2}-t}$=$\frac{{y}_{1}({x}_{2}-t)+{y}_{2}({x}_{1}-t)}{({x}_{1}-t)({x}_{2}-t)}$=$\frac{{y}_{1}({my}_{2}+1-t)+{y}_{2}({my}_{1}+1-t)}{({x}_{1}-t)({x}_{2}-t)}$
=$\frac{{2y}_{1}{y}_{2}m+({y}_{1}+{y}_{2})(1-t)}{({x}_{1}-t)({x}_{2}-t)}$=0,
即2y1y2m+(y1+y2)(1-t)=$\frac{-6m}{{m}^{2}+4}$+$\frac{-2m(1-t)}{{m}^{2}+4}$=0,
解得:t=4,
當(dāng)直線AB的斜率為0時(shí),t=4也滿足條件,
綜上,在x軸上存在一點(diǎn)T(4,0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是橢圓的標(biāo)準(zhǔn)方程,橢圓與直線的位置關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在區(qū)間[0,1]上任選兩個(gè)數(shù)x和y,則$y≥\sqrt{1-{x^2}}$的概率為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$1-\frac{π}{6}$D.$1-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x∈(-$\frac{π}{2}$,0)且cosx=$\frac{4}{5}$,則tan($\frac{π}{4}$+x)=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且滿足b2+c2-a2=bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,記△ABC的周長(zhǎng)為y,試求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(diǎn)(3a-9,a+2),且sin2α≤0,sinα>0,則a的取值范圍是( 。
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,橢圓E的離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)M(m,0)做斜率存在且不為0的直線l,交橢圓E于A,C兩點(diǎn),點(diǎn)P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$為定值.
(1)求橢圓E的方程;
(2)求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(x-1)ex+ax2有兩個(gè)零點(diǎn)
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最小值;
(Ⅱ)求a的取值范圍;
(Ⅲ)設(shè)x1,x2是f(x)的兩個(gè)零點(diǎn),證明:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}是公比大于0的等比數(shù)列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\frac{(-1)^{n-1}{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),其部分圖象如圖所示.
(1)求函數(shù) y=f(x)的解析式;
(2)若α∈(0,$\frac{π}{2}$),且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案