8.若變量x、y、z滿足約束條件$\left\{\begin{array}{l}{\stackrel{x+2y≥0}{x-y≤0}}\\{x-2y+2≥0}\end{array}\right.$,且m∈(-7,3),則z=$\frac{y}{x-m}$僅在點(diǎn)A(-1,$\frac{1}{2}$)處取得最大值的概率為( 。
A.$\frac{2}{7}$B.$\frac{1}{9}$C.$\frac{1}{10}$D.$\frac{3}{10}$

分析 由約束條件作出可行域,再由z=$\frac{y}{x-m}$的幾何意義,即可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)(m,0)連線的斜率求得m的范圍,由幾何概型概率計(jì)算公式得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{\stackrel{x+2y≥0}{x-y≤0}}\\{x-2y+2≥0}\end{array}\right.$作出可行域如圖,

z=$\frac{y}{x-m}$的幾何意義為可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)(m,0)連線的斜率,
∵z=$\frac{y}{x-m}$僅在點(diǎn)A(-1,$\frac{1}{2}$)處取得最大值,
∴由圖可知-2<m<-1.
又m∈(-7,3),
∴z=$\frac{y}{x-m}$僅在點(diǎn)A(-1,$\frac{1}{2}$)處取得最大值的概率為P=$\frac{1}{3-(-7)}=\frac{1}{10}$.
故選:C.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合直線斜率的幾何意義是解決本題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.橢圓$\left\{\begin{array}{l}x=5cosφ\\ y=3sinφ\end{array}\right.(φ為參數(shù))$的焦點(diǎn)坐標(biāo)為( 。
A.(±5,0)B.(±4,0)C.(±3,0)D.(0,±4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在山腳A測得山頂P的仰角為60°,沿傾斜角為15°的斜坡向上走200米到B,在B處測得山頂P的仰角為75°,則山高h(yuǎn)=150($\sqrt{6}$+$\sqrt{2}$)米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|2<x<4},B={x|x2-4x+3>0},則A∩B=( 。
A.(2,3)B.(3,4)C.(1,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若關(guān)于x的不等式x2+mx+n<0的解集為{x|1<x<2},則m+n=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|x>1},B={x|x(x-3)<0},則A∩B=( 。
A.[3,+∞)B.(0,3)C.(1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=2$\sqrt{7}$,則|$\overrightarrow$|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.對某工廠生產(chǎn)的產(chǎn)品進(jìn)行質(zhì)量監(jiān)測,現(xiàn)隨機(jī)抽取該工廠生產(chǎn)的某批次產(chǎn)品中的5件進(jìn)行檢測,測得其中x,y兩種指標(biāo)的含量的數(shù)據(jù)如下:
產(chǎn)品編號12345
指標(biāo) x6978667580
指標(biāo) y7580777081
(Ⅰ)當(dāng)該產(chǎn)品中指標(biāo)x,y滿足x≥75且y≥80時(shí),該產(chǎn)品為優(yōu)等品,求該產(chǎn)品為優(yōu)等品的概率;
(Ⅱ)若從該產(chǎn)品中隨機(jī)抽取2件,求出取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}+{({-1})^n}{log_2}{a_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案