【題目】如圖,四棱錐的底面是直角梯形,,,,,且,,.
(1)證明:平面;
(2)求點到平面的距離;
(3)求二面角的余弦值.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)首先取的三等分點,連結,,根據題意得到,,即四邊形是平行四邊形,所以.再根據線面平行的判定即可證明平面.
(2)首先證明平面,再分別以,,為軸軸軸,建立空間坐標系,求出,平面法向量,代入點到面的距離公式即可.
(3)分別求出平面和平面的法向量,代入二面角公式即可.
(1)
取的三等分點,連結,,則.
又因為,所以.
因為,所以,四邊形是平行四邊形.
所以,
又平面平面,平面PAD,
所以平面.
(2)設點到平面的距離為.
因為,,所以,
所以,因為,,
所以平面.
分別以,,為軸軸軸,建立空間坐標系,
,,,,,.
,,.
設平面法向量,
因為,所以,
點到平面的距離,
點到平面的距離為.
(3),,
設平面的法向量為,則
,即,
,,
設平面的法向量為,
,即,
所以,二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內需要更換的二級濾芯的個數(shù)構成的集合為.如圖是根據臺該款凈水器在十年使用期內更換的一級濾芯的個數(shù)制成的柱狀圖.
(1)結合圖,寫出集合;
(2)根據以上信息,求出一臺凈水器在使用期內更換二級濾芯的費用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設上述臺凈水器在購機的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內購買濾芯所需總費用的平均數(shù).并以此作為決策依據,如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應分別是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若曲線為曲線關于直線的對稱曲線,點,分別為曲線、曲線上的動點,點坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓右焦點的直線與橢圓交于,兩點,當直線與軸垂直時,.
(1)求橢圓的標準方程;
(2)當直線與軸不垂直時,在軸上是否存在一點(異于點),使軸上任意點到直線,的距離均相等?若存在,求點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的多面體的底面為直角梯形,四邊形為矩形,且,,,,,,分別為,,的中點.
(1)求證:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學試驗.為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當天出現(xiàn)癥狀的概率均為,假設每次接種后當天是否出現(xiàn)癥狀與上次接種無關.
(1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;
(2)若某只小白鼠在一個接種周期內出現(xiàn)2次或3次癥狀,則在這個接種周期結束后,對其終止試驗.設一只小白鼠參加的接種周期為,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com