分析 利用兩個向量共線的性質(zhì)可得$\overrightarrow a$與$\overrightarrow b$的夾角π,設(shè)$\overrightarrow$=-λ•$\overrightarrow{a}$,λ>0,根據(jù)$|{\overrightarrow b}|=3\sqrt{5}$,求得λ的值,可得$\overrightarrow b$的坐標(biāo).
解答 解:∵平面向量$\overrightarrow a=(-1,2)$,$|{\overrightarrow b}|=3\sqrt{5}$,設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,且cosθ=-1,
∴$\overrightarrow a$與$\overrightarrow b$的夾角θ=π,設(shè)$\overrightarrow$=-λ•$\overrightarrow{a}$=(λ,-2λ),λ>0,
∴λ2+(-2λ)2=${(3\sqrt{5})}^{2}$,∴λ=3,∴$\overrightarrow b$的坐標(biāo)為(3,-6),
故答案為:(3,-6).
點評 本題主要考查兩個向量共線的性質(zhì),求向量的模,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $3-2\sqrt{2}$ | B. | $2-\sqrt{2}$ | C. | $\sqrt{3}-\sqrt{2}$ | D. | $\sqrt{2}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$] | B. | (1,+∞) | C. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com