10.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.

分析 (1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用線面垂直的判定可得AB⊥平面PAD,進(jìn)一步得到平面PAB⊥平面PAD;
(2)由已知可得四邊形ABCD為平行四邊形,由(1)知AB⊥平面PAD,得到AB⊥AD,則四邊形ABCD為矩形,設(shè)PA=AB=2a,則AD=$2\sqrt{2}a$.取AD中點(diǎn)O,BC中點(diǎn)E,連接PO、OE,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)A、OE、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,求出平面PBC的一個(gè)法向量,再證明PD⊥平面PAB,得$\overrightarrow{PD}$為平面PAB的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角A-PB-C的余弦值.

解答 (1)證明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,
∵AB∥CD,∴AB⊥PD,
又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,
∴AB⊥平面PAD,又AB?平面PAB,
∴平面PAB⊥平面PAD;
(2)解:∵AB∥CD,AB=CD,∴四邊形ABCD為平行四邊形,
由(1)知AB⊥平面PAD,∴AB⊥AD,則四邊形ABCD為矩形,
在△APD中,由PA=PD,∠APD=90°,可得△PAD為等腰直角三角形,
設(shè)PA=AB=2a,則AD=$2\sqrt{2}a$.
取AD中點(diǎn)O,BC中點(diǎn)E,連接PO、OE,
以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)A、OE、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,
則:D($-\sqrt{2}a,0,0$),B($\sqrt{2}a,2a,0$),P(0,0,$\sqrt{2}a$),C($-\sqrt{2}a,2a,0$).
$\overrightarrow{PD}=(-\sqrt{2}a,0,-\sqrt{2}a)$,$\overrightarrow{PB}=(\sqrt{2}a,2a,-\sqrt{2}a)$,$\overrightarrow{BC}=(-2\sqrt{2}a,0,0)$.
設(shè)平面PBC的一個(gè)法向量為$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\sqrt{2}ax+2ay-\sqrt{2}az=0}\\{-2\sqrt{2}ax=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}=(0,1,\sqrt{2})$.
∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,
又PD⊥PA,PA∩AB=A,
∴PD⊥平面PAB,則$\overrightarrow{PD}$為平面PAB的一個(gè)法向量,$\overrightarrow{PD}=(-\sqrt{2}a,0,-\sqrt{2}a)$.
∴cos<$\overrightarrow{PD},\overrightarrow{n}$>=$\frac{\overrightarrow{PD}•\overrightarrow{n}}{|\overrightarrow{PD}||\overrightarrow{n}|}$=$\frac{-2a}{2a×\sqrt{3}}=-\frac{\sqrt{3}}{3}$.
由圖可知,二面角A-PB-C為鈍角,
∴二面角A-PB-C的余弦值為$-\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求二面角的平面角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C截直線y=1所得線段的長度為2$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)動(dòng)直線l:y=kx+m(m≠0)交橢圓C于A,B兩點(diǎn),交y軸于點(diǎn)M.點(diǎn)N是M關(guān)于O的對(duì)稱點(diǎn),⊙N的半徑為|NO|.設(shè)D為AB的中點(diǎn),DE,DF與⊙N分別相切于點(diǎn)E,F(xiàn),求∠EDF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg箱產(chǎn)量≥50kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=$\sqrt{3}$,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知曲線C1:y=cosx,C2:y=sin(2x+$\frac{2π}{3}$),則下面結(jié)論正確的是( 。
A.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移$\frac{π}{12}$個(gè)單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x≥0,y≥0,且x+y=1,則x2+y2的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知sinα-cosα=$\frac{4}{3}$,則sin2α=( 。
A.-$\frac{7}{9}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0,$\frac{1}{2}$)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(φ>0,-π<φ<0)的最小正周期是π,將f(x)圖象向左平移$\frac{π}{3}$個(gè)單位長度后,所得的函數(shù)圖象過點(diǎn)P(0,1),則函數(shù)f(x)( 。
A.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減B.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增
C.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案