2.已知sinα-cosα=$\frac{4}{3}$,則sin2α=(  )
A.-$\frac{7}{9}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{7}{9}$

分析 由條件,兩邊平方,根據(jù)二倍角公式和平方關(guān)系即可求出.

解答 解:∵sinα-cosα=$\frac{4}{3}$,
∴(sinα-cosα)2=1-2sinαcosα=1-sin2α=$\frac{16}{9}$,
∴sin2α=-$\frac{7}{9}$,
故選:A.

點評 本題考查了二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)A,B是橢圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1長軸的兩個端點,若C上存在點M滿足∠AMB=120°,則m的取值范圍是( 。
A.(0,1]∪[9,+∞)B.(0,$\sqrt{3}$]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,$\sqrt{3}$]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,兩準(zhǔn)線之間的距離為8.點P在橢圓E上,且位于第一象限,過點F1作直線PF1的垂線l1,過點F2作直線PF2的垂線l2
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點Q在橢圓E上,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通項公式;
(Ⅱ)求和:b1+b3+b5+…+b2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點,則a=( 。
A.-$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=-1,a4=b4=8,則$\frac{{a}_{2}}{_{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知F是拋物線C:y2=8x的焦點,M是C上一點,F(xiàn)M的延長線交y軸于點N.若M為FN的中點,則|FN|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3

查看答案和解析>>

同步練習(xí)冊答案